90 resultados para AL-CU-FE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identifying terrigenous sources in deep-sea sediments may reveal temporal trends in paleocirculation and the relative role of eolian, upwelled, and hemipelagic Fe sources to surface waters. Bulk elemental and isotopic geochemistry of deep-sea sediments recovered during Ocean Drilling Program Leg 177 in the southeastern Atlantic sector of the Southern Ocean reveal several important aspects of paleocirculation and terrigenous provenance. The sites studied span 43°-53°S and represent different oceanographic settings relative to regional hydrography and sediment type. Bulk sediment geochemistry indicates that terrigenous provenance varied over the past 600 k.y. Site 1089, the northernmost site, exhibits clear glacial-interglacial variability in provenance, while provenance appears to vary regardless of climate state at the more southerly sites (Site 1093 and 1094). Nd and Sr isotopes and Sm/Nd ratios of the terrigenous fraction indicate that study sites have geochemically distinguishable provenance. Nd and Sr isotopes further suggest that Sites 1089 and 1094 both contain detrital components that originated in South America over the past 30 k.y.; however, Site 1089 is also influenced by southern African sources and the strength of the Agulhas Current. The e-Nd data support a more hemipelagic source for the terrigenous material rather than an eolian source based on comparisons with Antarctic ice core data and known sea-ice extent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogenetic ferromanganese crusts were dredged from four seamounts in the western Pacific, OSM7, OSM2, Lomilik, and Lemkein, aligned in a NW-SE direction parallel to Pacific Plate movement. The crusts consist of four well-defined layers with distinct textural and geochemical properties. The topmost layer 1 is relatively enriched in Mn, Co, Ni, and Mo compared to the underlying layer 2, which is relatively enriched in Al, Ti, K, and Rb and Cu, Zn, and excess Ba. Textural and geochemical properties of layer 2 suggest growth conditions under high biogenic and detrital flux. Such conditions are met in the equatorial Pacific (i.e., between the Intertropical Convergence Zone (ITCZ) and equatorial high-productivity zone). Layer 2 likely formed when each seamount was beneath the equatorial Pacific along its back track path. On the other hand, layer 1 probably started to grow after seamounts moved northwest from the ITCZ. This interpretation is consistent with the thickness of layer 1 across the four crusts, which increases to the northwest. Ages of the layer 1-layer 2 boundary in each crust, a potential proxy for northern margin of the ITCZ, also increase to the northwest at 17, 11, 8, and 5 Ma for OSM7, OSM2, Lomilik, and Lemkein, respectively. Assuming Pacific Plate motion of 0.3°/Myr, the seamounts were located at 12°N, 11°N, 9°N, and 8°N at the time of boundary formation. This result suggests that the north edge of the ITCZ has shifted south since the middle Miocene in the western Pacific, which agrees with information from the eastern Pacific.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical analyses of manganese nodules from the Central Pacific Basin show that their chemical composition varies regionally, although that of the associated sediments is markedly uniform throughout the basin. Mn content varies from 16 to 32% in average. Its higher value is generally found in nodules from siliceous clay and a few from deep-sea clay. Fe content tends to enrich in nodules from deep-sea clay area. Most manganese nodules, except those from deep-sea clay, are remarkably depleted in Fe compared with ones from the other Pacific regions. Mostly, Cu and Ni contents exceed 1% in nodules from siliceous clay, and decrease towards the northwest of the basin where deep-sea clay is distributed. The inter-element relationship between manganese nodules and associated sediments suggests that the mechanism of incorporation of major and minor elements in nodules is apparently different from that of the associated sediments. This finding seems to provide a new interpretation on the problem why manganese nodules having low accumulation rate are not buried by the associated sediments with greater sedimentation rate and then occur on sediment-seawater interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscs Macoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis and Astarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and region-dependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.