973 resultados para A. soldadoensis d13C
Resumo:
The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.
Resumo:
Changes in the vertical water mass structure of the Vema Channel during the Pliocene have been inferred from benthic foraminiferal assemblages and stable isotopic analyses from three sites of DSDP Leg 72 (South Atlantic). Faunal and isotopic results from Sites 516A and 518 suggest that a major change occurred in deep-water circulation patterns in the late Pliocene near 3.2 Ma. Benthic oxygen isotopic records from Sites 516A and 518 show a characteristic increase in d18O values near 3.2 Ma. This has been documented in numerous Pliocene isotopic records. The magnitude of the oxygen isotopic enrichment near 3.2 Ma appears to increase with water depth from an average enrichment of 0.34 per mil in Site 516A (1313 m) to an average enrichment of 0.58 per mil in Site 518 (3944 m). We suggest that this enrichment resulted partly from a change in deep-water circulation patterns which included a decrease in bottom-water temperatures. Planktonic d18O values near 3.2 Ma show no evidence of an enrichment which would be indicative of an increase in global ice volume. On the contrary, d18O values in Sites 517 and 518 become more depleted near 3.2 Ma, indicating a surface-water warming perhaps due to a change in the strength and/or position of the Brazil Current. An increase in the relative abundance of the benthic foraminifer Nuttalides umbonifera, which is associated with Antarctic Bottom Water (AABW) in the modern ocean, coincides with the benthic 18O enrichment in Site 518. At 3.2 Ma, oxygen and carbon isotopic gradients between Sites 518 (3944 m) and 516A (1313 m) show a marked increase such that Site 518 becomes enriched in 18O and depleted in 13C relative to Site 516A. This enrichment in d18O is interpreted as partly representing a temperature decrease at Site 518; the depletion in d13C indicates a corrosive water mass which is high in metabolic CO2. We suggest that benthic foraminiferal and stable isotopic changes in Site 518 resulted from a pulse-like increase in the formation of AABW near 3.2 Ma. The cause of this circulation event may have been linked to global cooling and/or the final closure of the Central American Seaway.
Resumo:
The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.
Resumo:
To reconstruct variability of the West African monsoon and associated vegetation changes on precessional and millennial time scales, we analyzed a marine sediment core from the continental slope off Senegal spanning the past 44,000 years (44 ka). We used the stable hydrogen isotopic composition (dD) of individual terrestrial plant wax n-alkanes as a proxy for past rainfall variability. The abundance and stable carbon isotopic composition (d13C) of the same compounds were analyzed to assess changes in vegetation composition (C3/C4 plants) and density. The dD record reveals two wet periods that coincide with local maximum summer insolation from 38 to 28 ka and 15 to 4 ka and that are separated by a less wet period during minimum summer insolation. Our data indicate that rainfall intensity during the rainy season throughout both wet humid periods was similar, whereas the length of the rainy season was presumably shorter during the last glacial than during the Holocene. Additional dry intervals are identified that coincide with North Atlantic Heinrich stadials and the Younger Dryas interval, indicating that the West African monsoon over tropical northwest Africa is linked to both insolation forcing and high-latitude climate variability. The d13C record indicates that vegetation of the western Sahel was consistently dominated by C4 plants during the past 44 ka, whereas C3-type vegetation increased during the Holocene. Moreover, we observe a gradual ending of the Holocene humid period together with unchanging ratio of C3 to C4 plants, indicating that an abrupt aridification due to vegetation feedbacks is not a general characteristic of this time interval.
Resumo:
Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.