338 resultados para 853


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). epsilon-Nd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from ~5.46 to ~3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the epsilon-Nd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene epsilon-Nd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contents of Fe, Mn, Al, P, and rare earth elements (REE) in ferruginous nodules and host sediments of the eastern Barents Sea were studied. A direct Fe-P correlation in reactive components of the sediments and nodules was found. The nodules were shown to be formed through Fe(II) oxidation in the surface layer of sediments and cementation of terrigenous fraction of sediments by Fe(III) oxyhydroxides. The latter accumulate phosphorus due to processes of sorption - co-precipitation, by forming Fe(III) hydrophosphates. REE composition in the sediments and nodules normalized to NASC contents is characterized by increased proportion of light REE that may be caused by regional features of their sources. Due to significant share of terrigenous matter in the Fe nodules (up to 65% for Nd), REE composition of bulk samples is similar to that of host sediments. A negative cerium anomaly in composition of reactive REE may result from REE sorption from seawater. REE bulk composition of a ferruginous crust is closer to that of seawater than one of the ferruginous nodules from the sediments because of essentially lower content of diluent terrigenous matter.

Relevância:

10.00% 10.00%

Publicador: