662 resultados para 7137-115
Resumo:
Ocean Drilling Program Leg 115 was designed to study Neogene sedimentation history in the western Indian Ocean Basin as well as the Cenozoic evolution of the Reunion hotspot. We describe the paleomagnetic analysis of the sediments recovered on this leg, focusing on the sites that provided the most readily interpretable data: Sites 706, 709, 710, and 711. Sediments from Site 706 show no reversals but appear to give a reliable reversed polarity primary direction, judged on the basis of the demagnetization behavior of individual samples as well as from the results of a fold test formulated by comparing the two holes drilled at this site. Magnetic polarity stratigraphy in sediments from Site 709 can be deduced in two limited sections of Pliocene-Pleistocene and Oligocene-Miocene age. Sediments recovered at Site 710 (and, to a lesser extent, Site 711) render a relatively continuous magnetic polarity stratigraphy that spans most of the Neogene and adds significantly to the body of data available to address problems in Miocene geochronology. In addition to these magnetostratigraphic results, the paleomagnetism of these sediments can be used to determine paleolatitude. Using the most reliable inclination measurements from Sites 706, 710, and 711, we compared paleomagnetic estimates of paleolatitude with estimates derived from a hotspot-based absolute plate motion model. Our data, which covers the interval since 33 Ma, shows that paleolatitudes calculated with the geocentric axial dipole assumption are in general accord with the hotspot predictions. However, a correction for the long-term nondipole field brings the paleomagnetic results into even better agreement with plate motions that are based on the fixity of African hotspots.
Resumo:
Analyses of the Sr2+ concentrations of interstitial fluids obtained from sediments squeezed during Leg 115 were used to estimate the rates and total amount of recrystallization of biogenic carbonates. The total amount of recrystallization calculated using this method varies from less than 1 % in sediments at Site 706 to more than 40% at Site 709 in sediments of 47 Ma. Five of the sites drilled during Leg 115 (Sites 707 through 711) were drilled in a depth transect within a restricted geographic area so that theoretically they received similar amounts of sediment input. Of these, the maximum rate of recrystallization occurred in the upper 50 m of Site 710 (3812 m). The amount of recrystallization decreased with increasing water depth at Sites 708 (4096 m) and 711 (4428 m), presumably as a result of the fact that most of the reactive calcium carbonate was dissolved before burial. We also observed significant alkalinity deficits at many of these sites, a condition which most likely resulted from the precipitation of calcium carbonate either in the sedimentary column, or during retrieval of the core. Precipitation of CaCO3 as a result of pressure changes during core retrieval was confirmed by the comparison of Ca2+ and alkalinity from water samples obtained using the in-situ sampler and squeezed from the sediments. At Sites 707 and 716, the shallowest sites, no calcium or alkalinity deficits were present. In spite of our estimations of as much as 45% recrystallization at Site 709, all the carbonate sites exhibited what would be previously considered conservative Ca2+/Mg2+ profiles, which varied from -1 to -0.5. By virtue of the position of these sites relative to known basaltic basement or through the actual penetration of basalt (i.e., Sites 706, 707 and 712), these sites are all known to be underlain by basalt. Our results suggest, therefore, that more positive Ca2 + /Mg2+ gradients cannot necessarily be used as indicators of the nature of basement material.