490 resultados para 64-478
(Table 1) Sample descriptions and results: Carbon, lipid, and kerogen analyses, at DSDP Leg 64 Holes
Resumo:
Pleistocene sediments in the Guaymas Basin, Gulf of California, have been intruded by sills and their organic matter thus subjected to thermal stress. Sediment samples from DSDP/IPOD Sites 477, 478, and 481, and samples of thermally unaltered materials from Sites 474 and 479 were analyzed to characterize the lipids and kerogens and to evaluate the effects of the intrusive thermal stresses. The lipids of the thermally unaltered samples are derived from microbial and terrestrial higher-plant detritus. The samples from the sill proximities contain the distillates, and those adjacent to the sills contain essentially no lipids. The pyrograms of the kerogens from the unaltered samples reflect their predominantly autochthonous microbial origin. When compared with the unaltered samples, the pyrograms of the altered kerogen samples reflect the thermal effects by a reduction in the complexity of the products. Kerogens adjacent to the sills produced little or no pyrolysis products. The effects of intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter, as confirmed by these data.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.