350 resultados para 5-6 cm long (excluding Sagitta maxima), from data of net hauls
Resumo:
Analyses of spatial structure of hydrophysical fields and its vertical evolution in the Northeast Atlantic in a layer from the surface down to 2-2.5 km are carried out based on results of measurements in a testing area (31°-36°N, 20°-26°W) southeast of the Azores in autumn 1993. A description of an anti-cyclonic lens (ACL) of Mediterranean water (MW), which was found in the eastern part of the testing area from data of sets of sequential surveys, is presented. Analysis of CTD and XBT measurements in an area west of the lens allows to conclude that despite some contraction of width of the Azores Current directed eastward (from 60-80 km to 50-60 km) its total eastward volume transport for a period of time from October to November does not vary much. It is shown that intermediate salinity maxima in the northern part of the testing area formed by advection of MW and meddy destruction weakens while intersecting the Azores frontal zone (AFZ) from north to south, displacing itself to larger depth, and increases in thickness. Analysis of data shows that the number of lenses observed within the selected area north of the AFZ is two times more than that observed south of it. North of the AFZ observed salinity maximum and local temperature maxima may be associated with accumulation of heat and salt because of the fact that the AFZ is not only a southern boundary of penetration of MW into the North Atlantic, but also is a "semitransparent" boundary for Mediterranean lenses.
Resumo:
According to detailed petrological, geochemical, and isotope-geochemical study, fragments of fresh pillow lavas with chilled glass margins dredged at the Sierra-Leone test site in the axial rift zone of the MAR between 5° and 7°N correspond to MORB tholeiites, which are not primitive mantle melts, but were differentiated in intermediate magmatic (intrusive) chambers. Small-scale geochemical and Sr-Nd isotope heterogeneities were established for the first time in basalts and their glasses. It was shown that some samples have significant nonsystematic differences in the 87Sr/86Sr ratio between basalts and their chilled glasses and less significant difference in e-Nd; higher Sr ratios can be observed both in glasses and basalts of the same lava fragments. No significant correlation is observed between isotope characteristics of samples and their geochemistry; it was also shown that seawater did not affect Sr and Nd isotope compositions of the chilled glasses from the studied pillow lavas. It is suggested that such differences in isotope ratios are related to small-scale heterogeneity of melts owing to incomplete homogenization during their rapid ascent to the surface. Heterogeneity of basaltic melts is explained by their partial contamination by older plutonic rocks (especially gabbroids) of the lower oceanic crust, through which they ascended to the surface of the ocean floor. The wider scatter of the Sr isotopic ratios relative to Nd ones is related to presence of xenocrysts of calcic plagioclase; correspondingly, absence of a Nd mineral carrier in the rocks results in less distinct Nd isotope variations. It was shown that all studied basalts define a single trend along the mantle correlation array in the Sr-Nd isotope diagram. Causes of this phenomenon remain unclear.
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.