122 resultados para 3-DIMENSIONAL ISLAND FORMATION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sub-micron marine aerosol particles (PM1) were collected during the MERIAN cruise MSM 18/3 between 22 June 2011 and 21 July 2011 from the Cape Verde island Sao Vicente to Gabun crossing the tropical Atlantic Ocean and passing equatorial upwelling areas. According to air mass origin and chemical composition of the aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin, in the second part was marine and slightly biomass burning influenced (increasing tendency) and in the in last part of the cruise, approaching the African mainland, biomass burning influences became dominant. Generally aerosols were dominated by sulfate (caverage = 1.99 µg/m**3) and ammonium ions (caverage = 0.72 µg/m**3) that are well correlated and slightly increasing along the cruise. High concentrations of water insoluble organic carbon (WISOC) averaging 0.51 µg/m**3 were found probably attributed to the high oceanic productivity in this region. Water soluble organic carbon (WSOC) was strongly increasing along the cruise from concentrations of 0.26 µg/m**3 in the mainly marine influenced part to concentrations up to 3.3 µg/m**3 that are probably caused by biomass burning influences. Major organic constituents were oxalic acid, methansulfonic acid (MSA) and aliphatic amines. MSA concentrations were quite constant along the cruise (caverage = 43 ng/m**3). While aliphatic amines were more abundant in the first mainly marine influenced part with concentrations of about 20 ng/m**3, oxalic acid showed the opposite pattern with average concentrations of 12 ng/m**3 in the marine and 158 ng/m**3 in the biomass burning influenced part. The alpha dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng/m**3 range and followed oxalic acid closely. MSA and aliphatic amines accounted for biogenic marine (secondary) aerosol constituents whereas oxalic acid and the alpha dicarbonyl compounds were believed to result mainly from biomass burning. N-alkane concentrations increased along the cruise from 0.81 to 4.66 ng/m**3, PAHs and hopanes were abundant in the last part of the cruise (caverage of PAHs = 0.13 ng/m**3, caverage of hopanes = 0.19 ng/m**3). Levoglucosan was identified in several samples of the last part of the cruise in concentrations around 2 ng/m**3, pointing to (aged) biomass burning influences. The investigated organic compounds could explain 9.5% of WSOC in the mainly marine influenced part (dominating compounds: aliphatic amines and MSA) and 2.7% of WSOC in the biomass burning influenced part (dominating compound: oxalic acid) of the cruise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An isotope-geochronological study of Neogene-Quaternary igneous rocks from the Urup Island (Greater Kuril Ridge) was carried out. It was established that magmatic activity in the island developed during the last 10 my and it was not interrupted by long inactive periods. K-Ar data obtained along with results of diatomic analysis are in good agreement with the regional stratigraphic scheme of Paleogene and Neogene deposits and the intraregional correlation scheme of magmatic rocks in the Kuril Islands, which are developed for the State Geologic Map, scale 1:200 000 (Second edition). In the present-day territory of the Urup Island, the earliest Late Miocene - Early Pliocene (10.5-4.5 Ma) magmatic stage was associated with formation of the Rybakovsky andesite volcanic complex, which is represented by an effusive series (Rybakovskaya Suite) and subvolcanic rocks. Actually at the same time (6.6-4.7 Ma), but at a great depth, intrusive bodies of the Prasolovsky plagiogranite-diorite plutonic complex were intruded. The Pliocene stage of magmatism in the Urup Island is characterized by formation of rocks of the Kamuysky dacitic volcanic complex (4.0-2.1 Ma). This complex is locally represented only by subvolcanic acidic bodies, and its occurrence in the island is limited. During the Pliocene - Early Neopleistocene stage of magmatism (3.0-0.8 Ma) the Fregatsky andesibasalt volcanic complex was formed in the Urup Island. This complex includes effusive series (Fregatskaya unit) and subvolcanic bodies. Quaternary time in the Urup Island is characterized by eruptive activity in subaerial conditions with formation of effusive-pyroclastic intermediate-basic rocks of the Bogatyrsky Middle Neopleistocene - Holocene complex (<0.5 Ma). Rocks of this complex formed stratovolcano cones. Pyroclastic rocks of the Rokovsky dacitic volcanic complex were erupted simultaneously. The mentioned magmatic complexes of the Urup Island well correlate with the distinguished magmatic complexes within the bounds of contiguous insular blocks of the Greater Kuril Arc and confirm uniform geologic history of magmatic development of the region.