507 resultados para 189-1170C
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.
Resumo:
A major objective of Leg 189 was to date the opening of the Australia-Antarctic Gateway to shallow-water circulation and subsequently to deepwater circulation in the Paleogene. Calcareous nannofossils are the most consistently present, although not necessarily the most abundant fossil group in Paleogene sections, and the shipboard study (Exon, Kennett, Malone, et al., 2001, doi:10.2973/odp.proc.ir.189.2001) showed that they generally provided the most useful age information. This report presents documentation of the stratigraphic distribution of nannofossils in the Paleogene and summarizes useful nannofossil datums, which should facilitate construction of age-depth curves and contribute to an integrated chronology for Leg 189 sediments. Previous Paleogene nannofossil study in this area is that of Edwards and Perch-Nielsen (1975, doi:10.2973/dsdp.proc.29.113.1975).
Resumo:
Bulk and clay mineral investigations were conducted on ~750 samples from four sites drilled during Ocean Drilling Program Leg 189 on the western Tasmanian margin (Site 1168), the South Tasman Rise (Sites 1170 and 1171), and the East Tasman Plateau (Site 1172). The mineralogy of the bulk sediment is very similar at all sites, and major changes coincide with the boundaries of the three main lithologic units described in the Leg 189 Initial Reports volume. The clay mineral assemblages show significant regional differences, but their major variations coincide at all sites and with major changes in regional tectonics and climate.