170 resultados para 1220
Resumo:
Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.
Resumo:
CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.