155 resultados para 1125


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.