1000 resultados para Cibicidoides cf. wuellerstorfi, d13C
Resumo:
The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.
Resumo:
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.
Resumo:
Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
We document the waxing and waning of a "proto-warm pool" in the western equatorial Pacific (WEP) based on a study of multi-species planktic foraminiferal isotope ratios and census data spanning the 13.2-5.8 Ma interval at ODP Site 806. We hypothesize that the presence or absence of a proto-warm pool in the WEP, caused by the progressive tectonic constriction of the Indonesian Seaway and modulated by sea level fluctuations, created El Niño/La Niña-like alternations of hydrographic conditions across the equatorial Pacific during the late Miocene. This hypothesis is supported by the general antithetical relationship observed between carbonate productivity and preservation in the western and eastern equatorial Pacific, which we propose is caused by these alternating ocean-climate states. Warming of thermocline and surface waters, as well as a major change in planktic foraminferal assemblages record a two-step phase of proto-warm pool development ~11.6-10 Ma, which coincides with Miocene isotope events Mi5 and Mi6, and sea-level low stands. We suggest that these changes in the biota and structure of the upper water column in the WEP mark the initiation of a more modern equatorial current system, including the development of the Equatorial Undercurrent (EUC), as La Niña-like conditions became established across the tropical Pacific. This situation sustained carbonate and silica productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening after ~10 Ma may have contributed to the nadir of a similar "carbonate crash" in the EEP. Cooling of the thermocline and increased abundances of thermocline taxa herald the decay of the proto-warm pool and higher productivity in the WEP, particularly ~ 9.0-8.8 Ma coincident with a major perturbation in tropical nannofossil assemblages. We suggest that this interval of increased productivity records El Niño-like conditions across the tropical Pacific and the initial phase of the widespread "biogenic bloom". Resurgence of a later proto-warm pool in the WEP ~6.5-6.1 Ma may have spurred renewed La Niña-like conditions, which contributed to a strong late phase of the "biogenic bloom" in the EEP.
Resumo:
Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.
Resumo:
During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
Resumo:
The benthic foraminifer fauna at Sumisu Rift Sites 790 and 791 indicates that a deep open-ocean (>2300 m) or a basin with open-ocean access existed between 1.1 and 0.7 Ma at the time of the initiation of rifting. The appearance of a low- to medium-oxygen fauna (1600-2300 m) between 0.7 and 0.5 Ma suggests that the open-ocean access may have been terminated at this time because of the development of volcanoes and rift flank uplifts around the basin. The occurrence of low-oxygen faunas at 0.03 Ma suggests a secondary closing of the basin. The lower bathyal benthic faunas from lower Pliocene sediments of rift margin Site 788 suggest about 0.6-1.6 km of total basement uplift. This uplift may have led to the formation of the major hiatus between 2.3 and <0.3 Ma. The faunal changes of benthic foraminifers at Sites 792 and 793 in the forearc basin document a shallowing water depth from below the carbonate compensation depth (CCD) (about 3.5 km) in the late early Oligocene to the present depths of 1800 and 2975 m, respectively. These data suggest about 1 km of total basement uplift in the inner part of the forearc basin (Site 792) and about 0.6 km total basement subsidence in the central part of the forearc basin (Site 793) since about 31 Ma. The former uplift led to a thinner sediment accumulation (800 m) and the latter subsidence to a thicker sediment accumulation (1400 m) at these sites. Faunal changes of benthic foraminifers observed in Sites 782 and 786 sequences drilled at the outer-arc high document a deepening water depth from 1.3 to 2.1 km in late Eocene to the present depth of about 3 km. These data suggest about 1.1-1.9 and 1.3-2.1 km of total basement subsidence at Sites 786 and 782, respectively. These results indicate total basement uplift in the inner part of the Bonin arc-trench system since late Oligocene and total basement subsidence in the outer part of the system since late Eocene. The last occurrence (LO) of Stilostomella spp. and Pleurostomella spp. and the first occurrence (F0) of Bulimina aculeata d'Orbigny occurred consistently at 0.7 Ma at all three arc proximal sites (790,791, and 792). This fact is taken to suggest a change of water mass, from one originating from the central part of the ocean to that originating from ocean-margin areas at that time.
Resumo:
Benthic foraminifers from Site 652, Site 653 (Hole 653A), and Site 654 of Leg 107 (Tyrrhenian Sea, Western Mediterranean), which penetrated with more or less good recovery the Plio-Pleistocene stratigraphic interval, were studied in a total of 699 close-spaced samples. A total number of 269 species have been classified and their quantitative distribution in each sample is reported. The benthic foraminifers assemblage is more diversified in Site 654, less diversified in Site 652. Less than a half of the benthic foraminifers species listed from Plio-Pleistocene Italian land sections are present in the coeval deep-sea Tyrrhenian record, in which shallow water species are missing and Nodosarids are poorly represented. A very few species have comparable stratigraphic distribution in the three deep-sea sequences and in Italian land sections when compared against calcareous plankton biostratigraphy. In the same three sites, the first appearance levels of several species are younger and younger, and last appearance levels are earlier and earlier from Site 654 to Site 653 and Site 652. Five biostratigraphic events, biochronologically evaluated and occurring at the same level in the deepsea Tyrrhenian record and in several land sections, have been selected as zonal boundaries of the proposed benthic foraminifers biostratigraphic scheme. The Plio-Pleistocene interval has been subdivided into four biozones and one subzone, recognizable both in the deep-sea and land-based sequences. The Cibicidoides (?) italicus assemblage zone stretches from the base of the Pliocene to the extinction level of the zonal marker, biochronologically evaluated at 2.9 Ma. The Cibicidoides robertsonianus interval zone stretches from the Cibicidoides (?) italicus extinction level to the Pliocene Mediterranean FO of Gyroidinoides altiformis, evaluated at 2.4 Ma. The Gyroidinoides altiformis interval zone stretches from the Mediterranean Pliocene FO of the zonal marker to the appearance level of Articulina tubulosa, evaluated at 1.62 Ma. The Articulina tubulosa assemblage zone stretches from the appearance level of the zonal marker to the Recent. In the Articulina tubulosa biozone, the Hyalinea baltica subzone is proposed. The appearance level of Hyalinea baltica is evaluated at 1.35 Ma, well above the Plio-Pleistocene boundary as defined in the Vrica stratotype section.
Resumo:
In the late Paleocene to early Eocene, deep sea benthic foraminifera suffered their only global extinction of the last 75 million years and diversity decreased worldwide by 30-50% in a few thousand years. At Maud Rise (Weddell Sea, Antarctica; Sites 689 and 690, palaeodepths 1100 m and 1900 m) and Walvis Ridge (Southeastern Atlantic, Sites 525 and 527, palaeodepths 1600 m and 3400 m) post-extinction faunas were low-diversity and high-dominance, but the dominant species differed by geographical location. At Maud Rise, post-extinction faunas were dominated by small, biserial and triserial species, while the large, thick-walled, long-lived deep sea species Nuttallides truempyi was absent. At Walvis Ridge, by contrast, they were dominated by long-lived species such as N. truempyi, with common to abundant small abyssaminid species. The faunal dominance patterns at the two locations thus suggest different post-extinction seafloor environments: increased flux of organic matter and possibly decreased oxygen levels at Maud Rise, decreased flux at Walvis Ridge. The species-richness remained very low for about 50 000 years, then gradually increased. The extinction was synchronous with a large, negative, short-term excursion of carbon and oxygen isotopes in planktonic and benthic foraminifera and bulk carbonate. The isotope excursions reached peak negative values in a few thousand years and values returned to pre-excursion levels in about 50 000 years. The carbon isotope excursion was about -2 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, and about -4 per mil for planktonic foraminifera at Maud Rise. At the latter sites vertical gradients thus decreased, possibly at least partially as a result of upwelling. The oxygen isotope excursion was about -1.5 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, -1 per mil for planktonic foraminifera at Maud Rise. The rapid oxygen isotope excursion at a time when polar ice-sheets were absent or insignificant can be explained by an increase in temperature by 4-6°C of high latitude surface waters and deep waters world wide. The deep ocean temperature increase could have been caused by warming of surface waters at high latitudes and continued formation of the deep waters at these locations, or by a switch from dominant formation of deep waters at high latitudes to formation at lower latitudes. Benthic foraminiferal post-extinction biogeographical patterns favour the latter explanation. The short-term carbon isotope excursion occurred in deep and surface waters, and in soil concretions and mammal teeth in the continental record. It is associated with increased CaC03-dissolution over a wide depth range in the oceans, suggesting that a rapid transfer of isotopically light carbon from lithosphere or biosphere into the ocean-atmosphere system may have been involved. The rapidity of the initiation of the excursion (a few thousand years) and its short duration (50 000 years) suggest that such a transfer was probably not caused by changes in the ratio of organic carbon to carbonate deposition or erosion. Transfer of carbon from the terrestrial biosphere was probably not the cause, because it would require a much larger biosphere destruction than at the end of the Cretaceous, in conflict with the fossil record. It is difficult to explain the large shift by rapid emission into the atmosphere of volcanogenic CO2, although huge subaerial plateau basalt eruptions occurred at the time in the northern Atlantic. Probably a complex combination of processes and feedback was involved, including volcanogenic emission of CO2, changing circulation patterns, changing productivity in the oceans and possibly on land, and changes in the relative size of the oceanic and atmospheric carbon reservoirs.
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.