889 resultados para Age, 14C calibrated, CALIB 6.0 and Marine09 (Reimer et al., 2009)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioturbation in marine sediments has basically two aspects of interest for palaeo-environmental studies. First, the traces left by the burrowing organisms reflect the prevailing environmental conditions at the seafloor and thus can be used to reconstruct the ecologic and palaeoceanographic situation. Traces have the advantage over other proxies of practically always being preserved in situ. Secondly, for high- resolution stratigraphy, bioturbation is a nuisance due to the stirring and mixing processes that destroy the stratigraphic record. In order to evaluate the applicability of biogenic traces as palaeoenvironmental indicators, a number of gravity cores from the Portuguese continental slope, covering the period from the last glacial to the present were investigated through X-ray radiographs. In addition, physical and chemical parameters were determined to define the environmental niche in each core interval. A number of traces could be recognized, the most important being: Thalassinoides, Planolites, Zoophycos, Chondrites, Scolicia, Palaeophycus, Phycosiphon and the generally pyritized traces Trichichnus and Mycellia. The shifts between the different ichnofabrics agree strikingly well with the variations in ocean circulation caused by the changing climate. On the upper and middle slope, variations in current intensity and oxygenation of the Mediterranean Outflow Water were responsible for shifts in the ichnofabric. Larger traces such as Planolites and Thalassinoides dominated in coarse, well oxygenated intervals, while small traces such as Chondrites and Trichichnus dominated in fine grained, poorly oxygenated intervals. In contrast, on the lower slope where calm steady sedimentation conditions prevail, changes in sedimentation rate and nutrient flux have controlled variations in the distribution of larger traces such as Planolites, Thalassinoides, and Palaeophycus. Additionally, distinct layers of abundant Chondrites correspond to Heinrich events 1, 2, and 4, and are interpreted as a response to incursions of nutrient rich, oxygen depleted Antarctic waters during phases of reduced thermohaline circulation. The results clearly show that not one single factor but a combination of several factors is necessary to explain the changes in ichnofabric. Furthermore, large variations in the extent and type of bioturbation and tiering between different settings clearly show that a more detailed knowledge of the factors governing bioturbation is necessary if we shall fully comprehend how proxy records are disturbed. A first attempt to automatize a part of the recognition and quantification of the ichnofabric was performed using the DIAna image analysis program on digitized X-ray radiographs. The results show that enhanced abundance of pyritized microburrows appears to be coupled to organic rich sediments deposited under dysoxic conditions. Coarse grained sediments inhibit the formation of pyritized burrows. However, the smallest changes in program settings controlling the grey scale threshold and the sensitivity resulted in large shifts in the number of detected burrows. Therefore, this method can only be considered to be semi-quantitative. Through AMS-^C dating of sample pairs from the Zoophycos spreiten and the surrounding host sediment, age reversals of up to 3,320 years could be demonstrated for the first time. The spreiten material is always several thousands of years younger than the surrounding host sediment. Together with detailed X-ray radiograph studies this shows that the trace maker collects the material on the seafloor, and then transports it downwards up to more than one meter in to the underlying sediment where it is deposited in distinct structures termed spreiten. This clearly shows that age reversals of several thousands of years can be expected whenever Zoophycos is unknowingly sampled. These results also render the hitherto proposed ethological models proposed for Zoophycos as largely implausible. Therefore, a combination of detritus feeding, short time caching, and hibernation possibly combined also with gardening, is suggested here as an explanation for this complicated burrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 °C at 1832 ± 15 yr AD could be related to the 1809 ?D 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Late Weichselian-Early Holocene variability of the North Atlantic Current has been studied with focus on the zonal component of this meridional transport during the transition from glacial to interglacial conditions. The investigated sediment core is from 409 m water depth in the SW Barents Sea. Eight Accelerator mass spectrometry (AMS) 14C dates show that the core covers the last 20,000 cal yr B.P. with a centennial scale resolution during Late Weichselian-Early Holocene. Planktic foraminiferal assemblages were analyzed using the >100 ?m size fraction and foraminiferal planktic and benthic d13C and d18O isotopes were measured. Furthermore, a range of physical and chemical analyses has been carried out on the bulk sediment samples. Four time periods have been identified which represent the varying oceanographic conditions in Ingøydjupet, a glacial trough located off the north coast of Norway in the SW Barents Sea. 1) The late glacial (before ca 15,000 cal yr B.P.) influenced by the nearby ice sheets with high amounts of sea ice- or iceberg-transported detritus. 2) The late Oldest Dryas stadial and the Bølling-Allerød interstadial (ca 15,000-12,700 cal yr B.P.) with cold surface water conditions influenced by the collapse of the nearby ice sheets, high amounts of sea ice- or iceberg-transported detritus and melt water and weak subsurface inflow of Atlantic Water. 3) The Younger Dryas cold stadial (12,700-11,650 cal yr B.P.) with low primary productivity and extensive sea ice cover and 4) The Preboreal and Early Holocene (11,650-6800 cal yr B.P. cal yr B.P.) with strong influx of Atlantic Water into the area, near absence of ice rafted debris and generally ameliorated conditions in both surface and bottom water masses as seen from a high flux of foraminifera and increased marine primary production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We attempt a reconstruction of salinity levels of the central Baltic Sea based on diatom assemblages, the isotopic composition of organic matter and sedimentological expression of anoxia over the last 10 000 years. We use the data to investigate the dependence of salinity levels on climate evolution and isostasy. Changes in salinity of surface and deep waters were most pronounced from 8400 to approximately 5000 cal. BP. Density stratification between salty deep and fresher surface waters caused the frequent development of anoxic conditions and deposition of laminated sediments on large parts of the sea floor in the central Baltic Sea, and dramatic changes in organic carbon-accumulation rates. From 5000 to 3100 cal. BP, the salinity of the basin decreased, oxygenation of deep sea floors was improved, and fertility of the sea surface was significantly reduced. This is reflected by low accumulation rates of organic carbon in bioturbated sediments. Since 2800 cal. BP, salinity rose again and anoxic periods were more common. Even though the major steps in environmental evolution in the Baltic Sea coincide with known patterns of climatic change of the North Atlantic realm over the last 10 000 years, we find no conclusive evidence for synchronous changes or linear responses on submillennial timescales. However, we note that major variations in our salinity records agree with temporal patterns of reconstructed summer warmth and winter precipitation in southern Scandinavia. Both types of record suggest that climate in the mid-Holocene was far from stable. Our data also confirm that climate evolution over the late Holocene had significant impact on environmental conditions in the Baltic Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents newly obtained coral ages of the cold-water corals Lophelia pertusa and Madrepora oculata collected in the Alboran Sea and the Strait of Sicily (Urania Bank). These data were combined with all available Mediterranean Lophelia and Madrepora ages compiled from literature to conduct a basin-wide assessment of the spatial and temporal occurrence of these prominent framework-forming scleractinian species in the Mediterranean realm and to unravel the palaeo-environmental conditions that controlled their proliferation or decline. For the first time special focus was placed on a closer examination of potential differences occurring between the eastern and western Mediterranean sub-basins. Our results clearly demonstrate that cold-water corals occurred sparsely in the entire Mediterranean during the last glacial before becoming abundant during the Bølling-Allerød warm interval, pointing to a basin-wide, almost concurrent onset in (re-)colonisation after ~13.5 ka. This time coincides with a peak in meltwater discharge originating from the northern Mediterranean borderlands which caused a major reorganisation of the Mediterranean thermohaline circulation. During the Younger Dryas and Holocene, some striking differences in coral proliferation were identified between the sub-basins such as periods of highly prolific coral growth in the eastern Mediterranean Sea during the Younger Dryas and in the western basin during the Early Holocene, whereas a temporary pronounced coral decline during the Younger Dryas was exclusively affecting coral sites in the Alboran Sea. Comparison with environmental and oceanographic data revealed that the proliferation of the Mediterranean corals is linked with enhanced productivity conditions. Moreover, corals thrived in intermediate depths and showed a close relationship with intermediate water mass circulation in the Mediterranean sub-basins. For instance, reduced Levantine Intermediate Water formation hampered coral growth in the eastern Mediterranean Sea during sapropel S1 event as reduced Winter Intermediate Water formation did in the westernmost part of the Mediterranean (Alboran Sea) during the Mid-Holocene. Overall, this study clearly demonstrates the importance to consider region-specific environmental changes as well as species-specific environmental preferences in interpreting coral chronologies. Moreover, it highlights that the occurrence or decline of cold-water corals is not controlled by one key parameter but rather by a complex interplay of various environmental variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relative to the past 2,000 years, the Arctic region has warmed significantly over the past few decades. However, the evolution of Arctic temperatures during the rest of the Holocene is less clear. Proxy reconstructions, suggest a long-term cooling trend throughout the mid- to late Holocene, whereas climate model simulations show only minor changes or even warming. Here we present a record of the oxygen isotope composition of permafrost ice wedges from the Lena River Delta in the Siberian Arctic. The isotope values, which reflect winter season temperatures, became progressively more enriched over the past 7,000 years, reaching unprecedented levels in the past five decades. This warming trend during the mid- to late Holocene is in opposition to the cooling seen in other proxy records. However, most of these existing proxy records are biased towards summer temperatures. We argue that the opposing trends are related to the seasonally different orbital forcing over this interval. Furthermore, our reconstructed trend as well as the recent maximum are consistent with the greenhouse gas forcing and climate model simulations, thus reconciling differing estimates of Arctic and northern high-latitude temperature evolution during the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Tromper Wiek northeast of Rügen, acoustical investigations using Air Gun, Boomer, Chirp Sonar and Sediment-Echosounder were carried out. Together with sediment core information, it allowed the identification of five seismostratigraphic units (E1 to E5). Conventional and AMS-14C-datings supported their chronostratigraphical classification. The uppermost till (E1) was incised by late glacial channels filled with glaciolacustrine sediments (E2) of the early Baltic Ice Lake stages. These were regionally overlain with a sharp unconformity by a thick (locally >20 m) sedimentary complex (E3) of acoustically laminated silts of freshwater origin. This lower part of the E3-complex (E3a) is overlain by fluvial to coastal silty fine sands (E3b) deeper towards the Arkona Basin. Fine plant debris in the uppermost part of sub-unit E3a yielded ages of 10,100 and 10,500 14C-years B.P., representing the final phase of the Baltic Ice Lake. The fine sands of sub-unit E3b were deposited after the final drainage of the Baltic Ice Lake. In the shallower central part of the bay, the silts of sub-unit E3a were covered by a younger unit (E4) of fine sand with plant debris. A sedge peat occurring at the basis of unit E4 yielded an age of 9,590 14C-years B.P. The fine sands overlying the unit E3 in the central part of Tromper Wiek were deposited in the Ancylus Lake. Their position at about 20 m below present sea level (b.s.l.) reflects the maximum highstand in this area. The character and distribution of the Early Holocene deposits at greater depth suggest a lake water level at about 30 m b.s.l. after this highstand. Below 25 m b.s.l. muddy Littorina Sea sediments are observed. The thickness of these muds and sandy muds increases gradually towards the Arkona Basin. Locally, they are found in a channel-like structure immediately north of Jasmund.