873 resultados para 175-1081C
Resumo:
The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.
Resumo:
The Matuyama Diatom Maximum (MDM) is a time of peak opal accumulation from 2.6 to ~2.0 Ma within the Benguela Current upwelling system that was initiated by increased influence of Southern Ocean water on the eastern South Atlantic. We measured opal, total organic carbon (TOC), and CaCO3 fluxes and C and N stable isotopes in sediments deposited from 2.4 to 1.95 Ma at Sites 1082 and 1084 to explore the biogeochemical dynamics within the Benguela region. The infusion of Southern Ocean water delivered dissolved nutrients and Southern Ocean flora and fauna, resulting in local opal accumulation increasing up to 8 g/cm**2/ky and the production of diatom mats. Some d15N measurements of diatom-bound organic matter indicate that the mats grew within the Benguela region. The bulk sediment d15N records are taken to reflect changes in the d15N of nitrate in the incoming water, where lower values at 2.4 Ma reflect less nitrate utilization in the Antarctic. A long-term increase in relative nitrate uptake in the Southern Ocean is evidenced by the gradual increase in d15N toward 1.9 Ma.