854 resultados para air - sea exchanges
Resumo:
Snow height was measured by the Snow Depth Buoy 2014S24, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2014 (AFIN 2014). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-03-07 and 2014-05-16 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.
Resumo:
We demonstrate here that the growth increment variability in the shell of the long-lived bivalve mollusc Arctica islandica can be interpreted as an indicator of marine environmental change in the climatically important North Atlantic shelf seas. Multi-centennial (up to 489-year) chronologies were constructed using five detrending techniques and their characteristics compared. The strength of the common environmental signal expressed in the chronologies was found to be fully comparable with equivalent statistics for tree-ring chronologies. The negative exponential function using truncated increment-width series from which the first thirty years have been removed was chosen as the optimal detrending technique. Chronology indices were compared with the Central England Temperature record and with seawater temperature records from stations close to the study site in the Irish Sea. Statistically significant correlations were found between the chronology indices and (a) mean air temperature for the 14-month period beginning in the January preceding the year of growth, (b) mean seawater temperatures for February-October in the year preceding the year of growth (c) late summer and autumn air temperatures and sea surface temperatures for the year of growth and (d) the timing of the autumn decline in SST. Changes through time in the correlations with air and seawater temperatures and changes towards a deeper water origin for the shells in the chronology were interpreted as an indication that shell growth may respond to stratification dynamics.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
One main point of our atmospheric-electric measurements over the Atlantic Ocean 1973 was the investigation of the air-earth current density above the sea. In addition to direct measurements at the water surface with a floating net, we calculated the air-earth current density from the electric field and the air conductivity measured simultaneously on board of the ship and during particular ascents in the free atmosphere. During all five ascents the air-earth current density did not change with altitude. For pure maritime air-conditions, the mean air-earth current density was found to be 2.9 pA/m**2. The mean hourly air-earth current density over the Atlantic shows nearly the same 24-hour pattern as measured by Cobb (1977) at the South Pole at the same time. When dust-loaden air masses of African origin reached the ship as well as under continental influence the mean air-earth current density was reduced to 2.1 pA/m**2. The global 24-hour pattern was modified by this continental influences. Finally, it is shown that the values of the air conductivity measured on board R. V. "Meteor" during our earlier expeditions have been influenced by the exhaust of the ship and must therefore be corrected. With this correction, our new mean values of the air-earth current density over the Atlantic are 2.6 pA/m**2 in 1965 and 2.0 pA/m**2 in 1969. From all measurements, the global air-earth current is estimated to be about 1250 A.
Resumo:
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice-water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 µg C/l/d. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 µg C/l/d. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r**2 = 0.97, P < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.