850 resultados para Stable Carbon
Resumo:
We have analyzed the stable carbon isotopic composition of the diunsaturated C37 alkenone in 29 surface sediments from the equatorial and South Atlantic Ocean. Our study area covers different oceanographic settings, including sediments from the major upwelling regions off South Africa, the equatorial upwelling, and the oligotrophic western South Atlantic. In order to examine the environmental influences on the sedimentary record the alkenone-based carbon isotopic fractionation (Ep) values were correlated with the overlying surface water concentrations of aqueous CO2 ([CO2(aq)]), phosphate, and nitrate. We found Ep positively correlated with 1/[CO2(aq)] and negatively correlated with [PO43-] and [NO3-]. However, the relationship between Ep and 1/[CO2(aq)] is opposite of what is expected from a [CO2(aq)] controlled, diffusive uptake model. Instead, our findings support the theory of Bidigare et al. (1997, doi:10.1029/96GB03939) that the isotopic fractionation in haptophytes is related to nutrient-limited growth rates. The relatively high variability of the Ep-[PO4] relationship in regions with low surface water nutrient concentrations indicates that here other environmental factors also affect the isotopic signal. These factors might be variations in other growth-limiting resources such as light intensity or micronutrient concentrations.
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
Resumo:
The influence of different primary productivity regimes on live (Rose Bengal stained) and dead benthic foraminiferal distribution, as well as on the stable carbon isotopic composition of foraminiferal tests, was investigated in sediment surface samples (0-1 cm) from the upwelling region off Morocco between Cape Ghir (31°N) and Cape Yubi (27°N). A combination of factor analysis, detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) was applied to the benthic foraminiferal data sets. Five major assemblages for both the live and dead fauna were revealed by factor analysis. In the cape regions organic matter fluxes are enhanced by high chlorophyll-a concentrations in the overlying surface waters. Here, benthic foraminiferal faunas are characterized by identical live and dead assemblages, high standing stocks, and low species delta13C values, indicating constant year-round high productivity. Bulimina marginata dominates the unique fauna at the shallowest station off Cape Ghir indicating highest chlorophyll-a concentrations. Off both capes, the succession of the Bulimina aculeata/Uvigerina mediterranea assemblage, the Sphaeroidina bulloides/Gavelinopsis translucens assemblage, and the Hoeglundina elegans assemblage from the shelf to the deep sea reflects the decrease in chlorophyll-a concentrations, hence the export flux. In contrast, the area between the capes is characterized by differently composed live and dead assemblages, low standing stocks, and less depleted delta13C values, thus reflecting low primary productivity. High foraminiferal numbers of Epistominella exigua, Eponides pusillus, and Globocassidulina subglobosa in the dead fauna indicate a seasonally varying primary productivity signal. Significantly lower mean delta13C values were recorded in Bulimina mexicana, Cibicidoides kullenbergi, H. elegans, U. mediterranea and Uvigerina peregrina. Cibicidoides wuellerstorfi is a faithful recorder of bottom water delta13C in the Canary Islands regions. The mean delta13C signal of this species is not significantly influenced by constant high organic matter fluxes. The species-specific offset between live and dead specimens is the same.
Resumo:
Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 per mil Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.