1000 resultados para Carbon, organic, particulate per sediment volume


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate organic matter (POM) derived from permafrost soils and transported by the Lena River represents a quantitatively important terrestrial carbon pool exported to Laptev Sea sediments (next to POM derived from coastal erosion). Its fate in a future warming Arctic, i.e., its remobilization and remineralization after permafrost thawing as well as its transport pathways to and sequestration in marine sediments, is currently under debate. We present one of the first radiocarbon (14C) data sets for surface water POM within the Lena Delta sampled in the summers of 2009 - 2010 and spring 2011 (n = 30 samples). The bulk D14C values varied from -55 to -391 per mil translating into 14C ages of 395 to 3920 years BP. We further estimated the fraction of soil-derived POM to our samples based on (1) particulate organic carbon to particulate nitrogen ratios (POC : PN) and (2) on the stable carbon isotope (d13C) composition of our samples. Assuming that this phytoplankton POM has a modern 14C concentration, we inferred the 14C concentrations of the soil-derived POM fractions. The results ranged from -322 to -884 per mil (i.e., 3060 to 17 250 14C years BP) for the POC : PN-based scenario and from -261 to -944 per mil (i.e., 2370 to 23 100 14C years BP) for the d13C-based scenario. Despite the limitations of our approach, the estimated D14C values of the soil-derived POM fractions seem to reflect the heterogeneous 14C concentrations of the Lena River catchment soils covering a range from Holocene to Pleistocene ages better than the bulk POM D14C values. We further used a dual-carbon-isotope three-end-member mixing model to distinguish between POM contributions from Holocene soils and Pleistocene Ice Complex (IC) deposits to our soil-derived POM fraction. IC contributions are comparatively low (mean of 0.14) compared to Holocene soils (mean of 0.32) and riverine phytoplankton (mean of 0.55), which could be explained with the restricted spatial distribution of IC deposits within the Lena catchment. Based on our newly calculated soil-derived POM D14C values, we propose an isotopic range for the riverine soil-derived POM end member with D14C of -495 ± 153 per mil deduced from our d13C-based binary mixing model and d13C of -26.6 ± 1 per mil deduced from our data of Lena Delta soils and literature values. These estimates can help to improve the dual-carbon-isotope simulations used to quantify contributions from riverine soil POM, Pleistocene IC POM from coastal erosion, and marine POM in Siberian shelf sediments.