906 resultados para Accumulation rate, sand > 63 µm
Resumo:
Elevated regions in the central parts of ocean basins are excellent for study of accumulation of eolian material. The mass-accumulation rates of this sediment component appear to reflect changes in the influx of volcanic materials through the Early Cretaceous to Recent history of Deep Sea Drilling Project Site 463, on the Mid-Pacific Mountains. Four distinct episodes of eolian accumulation occurred during the Cretaceous: two periods of moderate accumulation, averaging about 0.2 to 0.3 g/cm**2/10**3 yr, 67 to 70.5 m.y. ago and 91 to 108 m.y. ago; a period of low accumulation, approximately 0.03 g/cm**2/10**3 yr, 70.5 to 90 m.y. ago; and a period of high accumulation, about 0.9 g/cm**2/10**3 yr, 109 to 117 m.y. ago (bottom of the hole). Much of the Cenozoic section is missing from Site 463. Upper Miocene to Recent sediments record an upward increase in accumulation rates, from less than 0.01 to about 0.044 g/cm**2/10**3 yr. The late Pliocene-Pleistocene peak may reflect the change to glacial-wind regimes, as well as an increase in volcanic source materials.
(Table T2) Accumulation rates, carbonate content and stable isotopes of ODP Hole 199-1219A sediments
Resumo:
The mass-accumulation rate and grain size of the total eolian component of North Pacific pelagic clays at Deep Sea Drilling Project Sites 576 and 578 have been used to evaluate changes in eolian sedimentation and the intensity of atmospheric circulation that have occurred during the past 70 m.y. Eolian deposition, an indicator of source area aridity, was low in the Paleocene, Eocene, and Oligocene, apparently reflecting the humid environments of that time as well as the lack of glacial erosion products. A general increase in eoiian accumulation in the Miocene apparently reflects the relative increase in global aridity during the latter part of the Cenozoic. A dramatic increase in eolian accumulation rates in the Pliocene reflects the increased aridity and availability of glacial erosion products associated with Northern Hemisphere glaciation 2.5 m.y. ago. Eolian grain size, an indicator of wind intensity, suggests that Late Cretaceous wind strength was comparable to present-day wind strength. A sharp decrease in eolian grain size across the Paleocene/Eocene boundary is not readily interpreted, but may indicate a significant reduction in the intensity of atmospheric circulation at that time. Fine eolian grain size and low accumulation rates in the Eocene and early Oligocene are in agreement with low early Tertiary thermal gradients and less vigorous atmospheric circulation. Large increases in grain size during the Oligocene, mid-to-late Miocene, and Pliocene appear to be a response to steepening thermal gradients resulting from increasing polar isolation.
Resumo:
A bottom sediment core about 8 m long sampled in the eastern Kara Sea near the entrance to the Vil'kitsky Strait was studied. An age model was constructed based on four 14C datings obtained from by thy accelerating mass spectrometry method. Results of grain size, chemical, mineralogical, and foraminiferal analyses were adjusted to the model. A paleoceanological interpretation of these data together with paleoclimatic data on the Bol'shevik Island located in the neighborhood was performed.
Resumo:
We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.