854 resultados para record values
Resumo:
The greater part of this Monograph is devoted to detailed descriptions of 1426 samples of deposits from the floor of the Atlantic Ocean stored in the Challenger Office, Edinburgh, which had been collected during thirty-five cruising expeditions between 1857 and 1911. The remaining part discusses the results of the work. The work of examining and describing in detail this abundant mass of material was in progress when the late Sir JOHN MURRAY met his death in March 1914. By that time about three-fourths of the descriptive work had been completed under his supervision. Sir John's trustees arranged for the completion of the descriptive work by Mr Chumley, and this was done in the Challenger Office during the two succeeding years. Later, after he had removed to Glasgow, Mr Chumley prepared the notes discussing the results. The trustees have pleasure in recording, on the suggestion of Mr Chumley, the courtesy of Dr G. W. Lee of the Geological Survey of Scotland, for help in determining many of the rarer mineral particles contained in the deposits.
Resumo:
Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (d15N) records of bulk sediment and foraminifera test-bound (FB) nitrogen extending back to the last ice age from the oligotrophic Gulf of Mexico (GOM). Previous studies indicate a substantial terrestrial input during the last ice age and early deglacial, for which we attempt to correct the bulk sediment d15N using its observed relationship with the C/N ratio. Both corrected bulk and FB-d15N reveal a substantial glacial-to-Holocene decrease of d15N toward Holocene values of around 2.5 per mil, similar to observations from the Caribbean. This d15N change is most likely due to a glacial-to-Holocene increase in regional N2-fixation. A deglacial peak in the FB-d15N of thermocline dwelling foraminifera Orbulina universa probably reflects a whole ocean increase in the d15N of nitrate during deglaciation. The d15N of the surface dwelling foraminifera Globigerinoides ruber and the corrected bulk d15N show little sign of this deglacial peak, both decreasing from last glacial values much earlier than does the d15N of O. universa; this may indicate that G. ruber and bulk N reflect the euphotic zone signal of an early local increase in N2-fixation. Our results add to the evidence that, during the last ice age, the larger iron input from dust did not lead to enhanced N2-fixation in this region. Rather, the glacial-to-Holocene decrease in d15N is best explained by a response of N2-fixation within the Atlantic to the deglacial increase in global ocean denitrification.
Resumo:
Die Frage einer Küstensenkung spielt seit Jahrzehnten bei der geologischen Erforschung des norddeutschen und niederländischen Flachlandes eine große Rolle. Der Schwerpunkt der bisherigen Arbeiten lag im südlichen Nordseeraum. Gerade dieses Gebiet bereitet aber wegen seines Aufbaues aus jungen, teilweise stark setzungsfähigen Gesteinen, des von Ort zu Ort und im Laufe der Zeit unterschiedlichen Einflusses der Gezeiten sowie wegen mancher anderer Bedingungen sehr große methodische Schwierigkeiten. Deshalb überrascht es nicht, daß die einzelnen Untersuchungen noch in den letzten beiden Jahrzehnten für die verschiedenen Abschnitte zu sehr abweichenden Folgerungen kamen, so daß die heute bekannten Einzeltatsachen nur ein recht widerspruchsvolles Gesamtbild ergeben. Da eine Klärung der Probleme durch eine Neubearbeitung an der Nordsee zunächst wenig erfolgversprechend erscheint, wird die Aufmerksamkeit unvermeidlich auf die Verhältnisse im südwestlichen Ostseeraum gelenkt. Hier bestehen in mancher Hinsicht einfachere Bedingungen, die eine derartige Untersuchung begünstigen. Vor allem die Nachbarschaft des skandinavischen Hebungsgebietes am gleichen Wasserbecken, die sehr geringen Gezeitenwirkungen und die hier weit verbreiteten Sandschüttungen bieten bessere Vergleichsmöglichkeiten und schalten viele Fehlerquellen aus. In der voliegenden Arbeit wurden die litorinazeitlichen und die nachlitorinazeitlichen Vertikalbewegungen des Landes und die eustatischen Schwankungen des Wasserstandes im südwestlichen Ostseeraum mit geologisch-morphologischen Methoden und durch die Auswertung von Lage und Verbreitung ur- und frühgeschichtlicher Funde sowie unter Auswertung von pollenanalytisch datierten Bohrprofilen und Pegelaufzeichnungen untersucht.
Resumo:
Geochemical variations in shallow water corals provide a valuable archive of paleoclimatic information. However, biological effects can complicate the interpretation of these proxies, forcing their application to rely on empirical calibrations. Carbonate clumped isotope thermometry (Delta47) is a novel paleotemperature proxy based on the temperature dependent "clumping" of 13C-18O bonds. Similar ?47-temperature relationships in inorganically precipitated calcite and a suite of biogenic carbonates provide evidence that carbonate clumped isotope variability may record absolute temperature without a biological influence. However, large departures from expected values in the winter growth of a hermatypic coral provided early evidence for possible Delta47 vital effects. Here, we present the first systematic survey of Delta47 in shallow water corals. Sub-annual Red Sea Delta47 in two Porites corals shows a temperature dependence similar to inorganic precipitation experiments, but with a systematic offset toward higher Delta47 values that consistently underestimate temperature by ~8 °C. Additional analyses of Porites, Siderastrea, Astrangia and Caryophyllia corals argue against a number of potential mechanisms as the leading cause for this apparent Delta47 vital effect including: salinity, organic matter contamination, alteration during sampling, the presence or absence of symbionts, and interlaboratory differences in analytical protocols. However, intra- and inter-coral comparisons suggest that the deviation from expected Delta47 increases with calcification rate. Theoretical calculations suggest this apparent link with calcification rate is inconsistent with pH-dependent changes in dissolved inorganic carbon speciation and with kinetic effects associated with CO2 diffusion into the calcifying space. However, the link with calcification rate may be related to fractionation during the hydration/hydroxylation of CO2 within the calcifying space. Although the vital effects we describe will complicate the interpretation of Delta47 as a paleothermometer in shallow water corals, it may still be a valuable paleoclimate proxy, particularly when applied as part of a multi-proxy approach.
Resumo:
Stable isotope data from eastern equatorial Pacific (EEP) core TR163-19 (2°15'N, 90°57'W, 2348 m) are presented for the surface-dwelling foraminifers Globigerinoides ruber and G. sacculifer and thermocline-dwelling Globorotalia menardii and Neogloboquadrina dutertrei. Using species-specific normalization factors derived from experimental and plankton tow data, we reconstruct a 360 kyr record of water column hydrography across the past three glacial cycles. We demonstrate that G. ruber maintains a mixed layer habitat throughout the entire record, while G. sacculifer records a mixture of thermocline and mixed layer conditions and G. menardii and N. dutertrei record thermocline properties. We conclude that G. sacculifer is not appropriate for paleoceanographic applications in regions with steep vertical hydrographic gradients. Results suggest that this region of the EEP had a thicker mixed layer and deeper d13CDIC boundary between the surface and equatorial undercurrent during the last two glacial periods. A shift in N. dutertrei and G. sacculifer geochemistry prior to ~185 kyr suggests water column structure and chemocline gradients changed, possibly due to a shift in the position of the undercurrent relative to this site. The timing and magnitude of glacial-interglacial d13C variations between species indicates that near-surface carbon chemistry is controlled by changes in productivity, atmospheric circulation, and advected intermediate water sources north of the Antarctic polar front. These results demonstrate that when properly calibrated for species differences, multispecies geochemical data sets can be invaluable for reconstructing water column structure and properties in the past.
Resumo:
In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47' N, 108°07' E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr = 1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~ -38 °C) and July (~ 12 °C) temperatures and annual precipitation (~ 270-300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8-14.7 kyr BP, during the Allerød Interstadial between 13.3-12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw ~ 17-18 °C, Tc ~ -19 °C, Pann ~ 500-550 mm) that occurred ca. 10.8-7.3 kyr BP. During this time interval woody vegetation covered more than 50 % of the area within a 21x21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7-6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.
Resumo:
Professor N. Andrussow, of Juriew (Dorpat) sent to the author a series of the deposit-samples collected in the Black Sea during the Russian explorations in 1890 and 1891 in the steamships Tschernomoretz, Zaporojetz, and Donetz. These deposits were submitted to careful microscopical examination and chemical analysis.
Resumo:
A molecular organic geochemical proxy (TEX86) for sea surface temperature (SST) is compared with a foraminifera-based SST proxy (Mg/Ca) in a decadal-resolution marine sedimentary record spanning the last 1000 years from the Gulf of Mexico. We assess the relative strengths of the organic and inorganic paleoceanographic techniques for reconstructing high-resolution SST variability during recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period (MWP). SST estimates based on the molecular organic proxy TEX86 show a similar magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates but with some important differences. For instance, both proxies show a cooling (1°C-2°C) of Gulf of Mexico SSTs during the LIA. During the MWP, however, Mg/Ca-SSTs are similar to near-modern SSTs, while TEX86 indicates SSTs that were cooler than modern. Using the respective SST calibrations for each proxy results in TEX86-SST estimates that are 2°C-4°C warmer than Mg/Ca-SST throughout the 1000 year record. We interpret the TEX86-SST as a summer-weighted SST signal from the upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST. Downcore differences in the SST estimates between the two proxies (DeltaT = TEX86 - Mg/Ca) are interpreted in the context of varying seasonality and/or changing water column temperature gradients.
Resumo:
Site 810 was drilled atop Shatsky Rise during Ocean Drilling Program (ODP) Leg 132. The principal objective at Site 810 was to drill interbedded cherts and chalks of Mesozoic age using the diamond coring system (DCS). The objective was not achieved because of difficulties in setting up the reentry cone on the seafloor; however, a shortened section of Cretaceous-Cenozoic nannofossil ooze was recovered with the advanced piston corer (APC). Although the section is interrupted by hiatuses, the upper 50 m carry detailed information relating to biogenic productivity, water chemistry, and eolian input during the Pliocene and Pleistocene. Four holes were drilled at Site 810. Hole 810A consists of a single mud-line core for an ongoing ODP geriatric study. The second hole (Hole 810B) was washed to 60 mbsf (without core recovery) to provide information required for setting the 16-in. casing attached to the reentry cone. Hole 810C penetrated 136.1 mbsf, mostly with the APC, with a total recovery of 143.81 m of nannofossil ooze. A reentry cone was placed over Hole 810D but no casing was successfully suspended in the hole and no sediment was cored. This data report presents the results of shore-based high-resolution analyses of carbonate and oxygen isotopic variations in the upper 50 m of the section at Site 810 and compares these variations with the shipboard determinations of magnetic susceptibility and GRAPE bulk density from the multisensor track.
Resumo:
We generated a high-resolution SSTMg/Ca record for the surface-dwelling planktonic foraminifera Globigerina bulloides from the core MD99-2346 collected in the Gulf of Lion, and compared it to that obtained using modern analogue techniques applied to fossil foraminiferal assemblages (SSTMAT). The two temperature records display similar patterns during the last 28,000 years but the SSTMg/Ca estimates are several degrees warmer (~+4 °C) than SSTMAT. The temperature shift between SSTMg/Ca and SSTMAT remained relatively constant over time. This seems to exclude a bias on the Mg/Ca record associated with salinity or secondary Mg-rich calcite encrustation on the foraminiferal tests during early diagenesis. Therefore, anomalously high Mg/Ca suggests either: (1) the empirical equation for G. bulloides of Elderfield and Ganssen (2000) is incorrect; or (2) there is a specific Mediterranean genotypes of G. bulloides for which a specific Mg/Ca-temperature calibration is needed.
Resumo:
Variation of the d13C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (~2430 and ~3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3 per mil lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d13C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d13C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d13C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d13C of Uvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 µm size classes on the basis of length measurements of individual specimens to evaluate d13C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d13C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d13C ontogenetic changes exist within the >250 to >750 µm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d13C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d13C data; it is 0.27 per mil for H. elegans at 3010 m and 0.4 per mil for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records.