872 resultados para Deep-sea fisheries
Resumo:
Lithological horizons have been distinguished in sediments cores from different parts of the Sea of Okhotsk based on primary descriptions of sediments and smear slides, and analyses of contents of both calcium carbonate and organic carbon, and opal. Sediment lithology has been correlated with oxygen isotope records and the standard isotope scale and radiocarbon data by AMS method for three cores studied in detail. This allowed to determine in detail periods of carbonaceous and diatomaceous ooze accumulation in the Sea of Okhotsk. Changes in magnetic susceptibility and grain size composition of sediments have been also compared with oxygen-isotope curves and radiocarbon datings. Obtained results confirm that variations in magnetic susceptibility are related with oxygen-isotope stages and influenced by climatic changes. Tephra interlayers K0, TR, K2, K3 have been identified by mineralogical analyses in all studied cores. Stratigraphic location of these tephra interlayers in detailed studied cores and their radiocarbon ages (8.1, 8.05, 26.8, and about 60 ka, respectively) provided base correlation between the interlayers and volcanic eruptions on the Kamchatka Peninsula and the Kuril Islands. This allows to use the former ones as time markers for deep-sea sediments of the Sea of Okhotsk. New lithostratigraphic and tephrochronologic data obtained allowed to correlate Upper Quaternary sediments from the Sea of Okhotsk.
Resumo:
The presence of abundant age-diagnostic dinoflagellate cysts in Ocean Drilling Program (ODP) Hole 913B (Leg 151), Deep Sea Drilling Project Hole 338 (Leg 38) and ODP Hole 643A (Leg 104) has enabled the development of a new biostratigraphy for the Eocene-Oligocene interval in the Norwegian-Greenland Sea. This development is important because the calcareous microfossils usually used for biostratigraphy in this age interval are generally absent in high latitude sediments as a result of dissolution. In parallel with this biostratigraphic analysis, we developed a magnetic reversal stratigraphy for these Norwegian-Greenland Sea sequences. This has allowed independent age determination and has enabled the dinocyst biostratigraphy to be firmly tied into the global geomagnetic polarity timescale (GPTS). The relatively high resolution of this study has enabled identification of dinoflagellate cyst assemblages that have affinities with those from the North Sea and the North Atlantic, which allows regional correlation. Correlation of each site with the GPTS has also allowed comparison of the stratigraphic record preserved in each drill-hole. Hole 913B is the most complete and is the best-preserved record of the Eocene and Oligocene in the Northern Hemisphere high latitudes, and can serve as a reference section for palaeoenvironmental reconstructions of this age interval.
Resumo:
Two hydraulic piston cores containing the total Quaternary suite were analyzed quantitatively in their planktonic foraminiferal contents. For the Early Pleistocene, the Caribbean standard zonation (BOLLI & PREMOLI-SILVA) can be adopted and refined by the introduction of an additional subzone at its base (the Globorotalia triangula subzone). Local substages are proposed for the Late Pleistocene because index fossils are missing. The use of the transfer-function technique resulted in paleotemperature and paleosalinity curves with a time resolution of cycles of about 4-68,000 years duration. The Early Pleistocene paleoenvironment is characterized by low oscillations of the surface water temperatures, followed by a distinct cooling trend during the Globorotalia viola subzone, a period of smoothed cycles during the Globorotalia hessi subzone and distinctly developed cycles during the late Pleistocene since the oxygen isotope termination III. Grainsize distribution and several dissolution indices gave evidence for current activities on the top of the Walvis Ridge, where the amount of fine grained components in the sediment is reduced in comparison with that of the flanks.
Resumo:
Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.