995 resultados para Carbon, organic, dissolved


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore water extracted from sediments penetrated on Leg 164 of the Ocean Drilling Program at the Blake Ridge West. Atlantic were analyzed for acetate, total dissolved organic carbon, bromide and iodide, to help explain the occurrence of subsurface maxima in bacteria biomass and activity reported previously from a nearby site. The high concentrations of these organic matter decomposition by-products in the pore waters from sediments with moderate concentrations of sedimentary organic matter can convincingly be modelled as resulting from upward migration of pore water. The amount of acetate and unidentified DOC transported by the pore water contribute significantly to the pool of metabolizable carbon, and may be the most important substances in energetic terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the ecology of bioindicators such as ostracods is essential in order to reconstruct past environmental and climate change from analysis of fossil assemblages preserved in lake sediment cores. Knowledge of the ecology of ancient Lake Ohrid's ostracod fauna is very limited and open to debate. In advance of the Ohrid ICDP-Drilling project, which has potential to generate high-resolution long-term paleoenvironmental data of global importance in paleoclimate research, we sampled Lake Ohrid and a wide range of habitat types in its surroundings to assess 1) the composition of ostracod assemblages in lakes, springs, streams, and short-lived seasonal water bodies, 2) the geographical distribution of ostracods, and 3) the ecological characteristics of individual ostracod species. In total, 40 species were collected alive, and seven species were preserved as valves and empty carapaces. Of the 40 ostracod species, twelve were endemic to Lake Ohrid. The most common genus in the lake was Candona, represented by 13 living species, followed by Paralimnocythere, represented by five living species. The most frequent species was Cypria obliqua. Species with distinct distributions included Heterocypris incongruens, Candonopsis kingsleii, and Cypria lacustris. The most common species in shallow, flooded areas was H. incongruens, and the most prominent species in ditches was C. kingsleii. C. lacustris was widely distributed in channels, springs, lakes, and rivers. Statistical analyses were performed on a "Lake Ohrid" dataset, comprising the subset of samples from Lake Ohrid alone, and an "entire" dataset comprising all samples collected. The unweighted pair group mean average (UPGMA) clustering was mainly controlled by species-specific depth preferences. Canonical Correspondence Analysis (CCA) with forward selection identified water depth, water temperature, and pH as variables that best explained the ostracod distribution in Lake Ohrid. The lack of significance of conductivity and dissolved oxygen in CCA of Ohrid data highlight the uniformity across the lake of the well-mixed waters. In the entire area, CCA revealed that ostracod distribution was best explained by water depth, salinity, conductivity, pH, and dissolved oxygen. Salinity was probably selected by CCA due to the presence of Eucypris virens and Bradleystrandesia reticulata in short-lived seasonal water bodies. Water depth is an important, although indirect, influence on ostracod species distribution which is probably associated with other factors such as sediment texture and food supply. Some species appeared to be indicators for multiple environmental variables, such as lake level and water temperature.