843 resultados para Alnus undifferentiated
Resumo:
Pollen analysis of Wisconsinan sediments from eleven localities in northern and central Illinois, combined with the results of older studies, allows a first general survey of the vegetational changes in Illinois during the last glaciation. In the late Altonian (after 40,000 B.P.), pine was already the most prevalent tree type in northern Illinois. Probably because of the influence of the last Altonian ice advance to northern Illinois, pine migrated to the south and reached south-central Illinois, which was at that time a region of prairie, with oak and hickory trees in favorable sites. Likewise in the late Altonian, spruce appeared in northern Illinois. Spruce also expanded its area to the south during the Wisconsinan, reaching south-central Illinois only after 21,000 B.P., in the early Woodfordian. Deciduous trees (predominantly oak) were present in south-central Illinois throughout the Wisconsinan. Their prevalence decreased to the north. The vegetation during the different subdivisions of the last glacial period in Illinois was approximately as follows: Late Altonian: Pine/spruce forest with some deciduous trees in northern and central Illinois; prairie and oak/hickory stands in south-central Illinois; immigration of pine. Farmdalian: Pine/spruce forest in central Illinois; deciduous trees and pine in south-central Illinois, with areas of open vegetation, perhaps similar to the present-day transition of prairie to forest in the northern Great Plains. Woodfordian: Northern and central Illinois ice covered; in south central Illinois, spruce and oak as dominant tree types, but also pine and grassland. During the Woodfordian, pine and spruce disappeared again from south-central Illinois, and oak/hickory forest and prairie again prevailed. The ice-free areas of northern Illinois become populated temporarily with spruce, but later there is proof of deciduous forest in this region. Pollen investigations in south-central Illinois have shown convincingly that deciduous trees could survive relatively close (less than 60 km) to the ice margin. Therefore the frequently presented view that arctic climatic conditions prevailed in North America during the last glaciation far south of the ice margin can be refuted for the Illinois area, confirming the opinion of other authors resulting from investigations of fossil mollusks and frost-soil features. The small number of localities investigated still permits no complete reconstruction of the vegetation zones and their possible movements in Illinois. During the Altonian and Farmdalian in Illinois, a vegetational zonation probably existed similar to that of today in North America. As the ice pushed southward as far as 39° 20' N. lat in the early Woodfordian, this zonation was apparently broken up under the influence of a relatively moderate climate. In any case, the Vandalia area, which was only about 60 km south of the ice, was at that time neither in a tundra zone nor in a zone of boreal coniferous forest.
Resumo:
To unravel the climatic and environmental dynamics in the borderlands of the Aegean Sea during the early and middle Holocene, and notably for the interval of sapropel S1 (S1) formation, we have analysed terrestrial palynomorphs from a marine core in the northern Aegean Sea. The qualitative results were complemented by quantitative pollen-based climate reconstructions. A land-sea correlation was established based on pollen data and sediment lightness measurements from the same core, and previously published benthic foraminifer data from a nearby core. The borderlands of the Aegean Sea underwent a transition from an open vegetation to oak-dominated woodlands between ~10.4 and ~9.5 ka cal BP. A coeval increase in winter precipitation suggests that moisture availability was the main factor controlling Holocene reforestation. The ~50% higher winter precipitation during S1 formation relative to "pre-sapropelic" conditions suggests a strong contribution from the borderlands of the Aegean Sea to the freshwater surplus during S1 formation. The humid and mild winter conditions during S1 formation were repeatedly punctuated by short-term climatic events that caused a partial deforestation and a reorganisation within the broad-leaved arboreal vegetation. In the marine realm, these events are documented by improved benthic oxygenation. The strongest event represents the regional expression of the 8.2 ka cold event and led to an interruption in S1 formation. Except for the interval of S1 formation, the pollen-derived winter temperatures correlate with the smoothed GISP2 K+ series. They support the previously published, marine-based concept that the intensity of the Siberian High strongly controlled the winter climate in the Aegean region. During S1 formation in the Aegean Sea, however, climate conditions in the borderlands were more strongly affected by the monsoonally influenced climate system of the lower latitudes.
Resumo:
Limno-glacial deposits 110 cm in thickness in the upper alpine belt have been investigated. It is established that during the Yuanakhchiri period of glaciation in the region under study a glacial cirque was situated at an altitude of 2750 m a.s.l. After the glacier retreated, a lake was formed in its bed which existed till the second noticeable cooling in the second half of SA2 (1600-1500 years ago).
Resumo:
Fluxes of airborne freshwater diatoms (FD), phytoliths (PH), and pollen grains (PO) collected with sediment traps off Cape Blanc, northwest Africa, from 1988 till 1991 are presented. Both continental rainfall variations and wind mean strength and direction play a key role in the temporal fluctuations of the fluxes of eolian traces in the pelagic realm. Drier conditions in Northern Africa in 1987 could have preceded the high lithogenic input and moderate FD flux in 1988. The PH peak in summer 1988 was probably caused by increased wind velocity. Wetter rainy seasons of 1988/89 might have promoted a significant pollen production in summer 1989, and FD in late 1989 and early 1990, as well as contributed to the reduction of the lithogenic flux in 1989/90. Decreased fluxes of FD, PH and PO, and higher contribution of the 6-11 µm lithogenic fraction in 1991 would mainly reflect minor intensity and decreased amount of continental trade winds. Air-mass backward trajectories confirm that the Saharan Air Layer is predominantly involved in the spring/summer transport. Trade winds play a decisive role in the fall/winter months, but also contribute to the transport during late spring/summer. Origin of wind trajectories does not support a direct relationship between transporting wind-layers and material source areas in Northern Africa. High winter fluxes of eolian tracers and high amount of trade winds with continental origin in summer warn against a simplistic interpretation of the seasonal eolian signal preserved in the sediments off Cape Blanc, and the wind layer involved in its transport.