861 resultados para Passive continental margin
Resumo:
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Resumo:
We report on observations of dense shelf water overflows and Antarctic Bottom Water (AABW) formation along the continental margin of the Adelie and George V Land coast between 140°E and 149°E. Vertical sections and bottom layer water mass properties sampled during two RVIB Nathaniel B Palmer hydrographic surveys (NBP00-08, December 2000/January 2001 and NBP04-08, October 2004) describe the spreading of cold, dense shelf water on the continental slope and rise from two independent source regions. The primary source region is the Adelie Depression, exporting high-salinity dense shelf water through the Adelie Sill at 143°E. An additional eastern source region of lower-salinity dense shelf water from the Mertz Depression is identified for the first time from bottom layer properties northwest of the Mertz Sill and Mertz Bank (146°E-148°E) that extend as far as the Buffon Channel (144.75°E) in summer. Regional analysis of satellite-derived ice production estimates over the entire region from 1992 to 2005 suggests that up to 40% of the total ice production for the region occurs over the Mertz Depression and therefore this area is likely to make a significant contribution to the total dense shelf water export. Concurrent time series from bottom-mounted Microcats and ADCP instruments from the Mertz Polynya Experiment (April 1998 to May 1999) near the Adelie Sill and on the upper continental slope (1150 m) and lower continental rise (3250 m) to the north describe the seasonal variability in downslope events and their interaction with the ambient water masses. The critical density for shelf water to produce AABW is examined and found to be 27.85 kg/m**3 from the Adelie Depression and as low as 27.80 kg/m**3 from the Mertz Depression. This study suggests previous dense shelf water export estimates based on the flow through the Adelie Sill alone are conservative and that other regions around East Antarctica with similar ice production to the Mertz Depression could be contributing to the total AABW in the Australian-Antarctic Basin.
Resumo:
Surface sediments from the South American continental margin surrounding tbe Argentine Basin were studied with respect to bulk geochemistry (Caeo) and C ) and grain-size composition (sand/silt/clay relation and terrigenous silt grain-size distribution). The grain-size distributions of the terrigenous silt fraction were unmixed into three end members (EMs), using an end-member modelling algorithm. Three unimodal EMs appear to satisfactorily explain the variations in the data set of the grain-size distributions ofterrigenous silt. The EMs are related to sediment supply by rivers, downslope transport, winnowing, dispersal and re-deposition by currents. The bulk geochemical composition was used to trace the distribution of prominent water masses within the vertical profile. The sediments of the eastern South American continental margin are generally divided into a coarse-grained and carbonate-depleted southwestern part, and a finer-grained and carbonate-rich northeastern part. The transition of both environments is located at the position of the Brazil Malvinas Confluence (BMC). The sediments below the confluence mixing zone of the Malvinas and Brazil Currents and its extensions are characterised by high concentrations of organic carbon, low carbonate contents and high proportions of the intennediate grain-size end member. Tracing these properties, the BMC emerges as a distinct north-south striking feature centered at 52-54°W crossing the continental margin diagonally. Adjacent to this prominent feature in the southwest, the direct detrital sediment discharge of the Rio de la Plata is clearly recognised by a downslope tongue of sand and high proportions of the coarsest EM. A similar coarse grain-size composition extends further south along the continental slope. However, it displays bener sorting due to intense winnowing by the vigorous Malvinas Current. Fine-grained sedimentary deposition zones are located at the southwestern deeper part of the Rio Grande Rise and the southern abyssal Brazil Basin, both within the AABW domain. Less conspicuous winnowing/accumulation panerns are indicated north of the La Plata within the NADW level according to the continental margin topography. We demonstrate that combined bulk geochemical and grain-size properties of surface sediments, unmixed with an end-member algorithm, provide a powerful tool to reconstruct the complex interplay of sedimentology and oceanography along a time slice.