849 resultados para Acanthocardia aculeata
Resumo:
Ecological and taxonomic study of the mollusk-rich fauna of the Golfe d'Arguin, North Mauritania, investigates the various environmental influences affecting this tropical shelf. The upwelling of nutrient-rich waters leads to a highly productive environment under tropical conditions. The resulting mixed carbonate-siliciclastic sediment contains a large portion of calcareous components produced by heterotrophic organisms-e.g., mollusks, foraminifers, worms, barnacles-that are reworked on the open shelf. On the basis of mollusk assemblages, six taphocoenoses are defined, all being characterized by a mixed fauna of tropical (e.g., Tellina densestriata), subtropical (e.g., Macoma cumana) and temperate (e.g., Spisula subtruncata) species. Differences between the assemblages are related to the medium-grain size ranging from mud to gravel-that results from local hydrodynamic conditions and water depth. Among carbonate grains, Donax burnupi shells are very abundant in the swell-exposed, northern part of the Golfe d'Arguin and reflect the tropical to subtropical, high-energy, and high-nutrient waters. Mollusk assemblages are demonstrated to be a sensitive tool for deciphering complex environmental conditions in sedimentary archives.
Resumo:
Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
Resumo:
Water depth zonation of fifty nine benthonic foraminiferal species in marine sediment surfaces has been described. Some species are combined to groups which mark particular depth zones: an upper and lower shelf-fauna, an upper and lower slope fauna, and a shelf-slope fauna. Dependence on latitude could be ascertained for Textularia panamensis, and submergence effects for Hyalinea balthica.
Resumo:
Seventeen surface sediment samples from the North Atlantic Ocean off NE-Greenland between 76° and 81°N, and nine samples from the South Atlantic Ocean close to Bouvet Island between 48° and 55°S were taken with the aid of a Multiple Corer and investigated for their live (Rose Bengal stained) benthic foraminiferal content within the upper 15 cm of sediment. Preferentially endobenthic Melonis barleeanum, Melonis zaandami, and Bulimina aculeata as well as preferentially epibenthic Lobatula lobatula were counted from 1-cm-thick sediment slices each and analyzed for stable carbon and oxygen isotopic compositions of their calcareous tests. Live and dead specimens were counted and measured separately. The carbon isotopic composition of the foraminifera was compared to that of the dissolved inorganic carbon (DIC) of simultaneously sampled bottom water. During a period of one month, one station off NE-Greenland was replicately sampled once every week and samples were processed as above. Live specimens of Lobatula lobatula are confined to the uppermost two centimeters of sediment. Live specimens of Melonis spp. are found down to 8 cm within the sediment but with a distinct sub-surface maximum between 2 and 5 cm. The down-core distribution of live Bulimina aculeata shows a distinct surface maximum in the top centimeter and constant but low numbers down to 11-cm subbottom depth. The average stable carbon isotopic composition (d13C versus per mil PDB) of live Lobatula lobatula off NE-Greenland is by 0.4±0.1 per mil higher than the d13CDIC of the ambient bottom water at the time of sampling. There is evidence that this species calcify before the ice-free season, when bottom water d13CDIC is supposed to be higher. This would reconfirm the one-to-one relationship between d13C of ambient water DIC and cibicids, widely used by paleoceanographers. Live Melonis barleeanum show a negative offset from bottom water DIC of -1.7±0.6 per mil in the uppermost sediment and of -2.2±0.5 per mil in 3-4-cm subbottom depth. All d13C values of live Melonis spp. decrease within the upper four centimeters, regardless of the time of sampling and site investigated. The offset of live Bulimina aculeata from bottom water d13CDIC values of 8 stations rather constantly amounts to -0.6±0.1 per mil, no matter what subbottom depth the specimens are from. At one station however, where is strong indication of elevated organic carbon flux, the negative offset averaged over all sub-bottom depths increases to -1.5±0.2 per mil. Buliminids actively move within the sediment and by this either record an average isotope signal of the pore water or the signal of one specific calcification depth. The recorded signal, however, depends on the organic carbon flux and reflects general but site-specific pore water d13CDIC values. If compared with epibenthic d13C values from the same site, not influenced by pore water and related phytodetritus layer effects, Buliminad13C values bear some potential as a paleoproductivity proxy. Specimens of Melonis spp. seem to prefer a more static way of life and calcify at different but individually fix depths within the sediment. Although live specimens thus record a stratified pore water d13C signal, there is no means yet to correct for bioturbational and early diagenetic effects in fossil faunas.