818 resultados para 182-1129A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first and last appearances of Quaternary planktonic foraminifers in the Great Australian Bight were evaluated using datum levels from magnetostatigraphy, oxygen isotope stratigraphy, and calcareous nannofossil biostratigraphy to determine whether they were synchronous or diachronous with open-ocean biostratigraphic events. The first appearance of Globorotalia truncatulinoides is diachronous at 1.6-1.7 Ma at Site 1127 and 1.1-1.2 at Sites 1129 and 1132, similar to other local appearances in high latitudes. All other datum levels, however, are synchronous with open-ocean events, including the first appearance of Globorotalia hirsuta and the last appearances of Globorotalia tosaensis and pink Globigerinoides ruber in the Indo-Pacific region. A local reappearance of Gt. hirsuta at ~0.12 Ma and the disappearance of Globorotalia crassaformis at ~0.10 Ma were found to be useful for local biostratigraphy. Age control at the bottom of all of the sections is poor at this time, but results suggest that sedimentation recommenced starting at ~1.9 Ma above the regional unconformity that marks the base of seismostratigraphic Sequence 2. Sediment accumulation is distinctly reduced in the lower Pleistocene compared to the upper Pleistocene, perhaps in part because of processes associated with several omission surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies have shown that methanogens are active in the presence of sulfate under some conditions. This phenomenon is especially exemplified in carbonate sediments of the southern Australian continental margin. Three sites cored during Ocean Drilling Program (ODP) Leg 182 in the Great Australian Bight have high concentrations of microbially-generated methane and hydrogen sulfide throughout almost 500 m of sediments. In these cores, the sulfate-reducing and methanogenic zones overlap completely; that is, the usual sulfate-methane transition zone is absent. Amino acid racemization data show that the gassy sediments consist of younger carbonates than the low-gas sites. High concentrations of the reduced gases also occur in two ODP sites on the margin of the Bahamas platform, both of which have similar sedimentary conditions to those of the high-gas sites of Leg 182. Co-generation of these reduced gases results from an unusual combination of conditions, including: (1) a thick Quaternary sequence of iron-poor carbonate sediments, (2) a sub-seafloor brine, and (3) moderate amounts of organic carbon. The probable explanation for the co-generation of hydrogen sulfide and methane in all these sites, as well as in other reported environments, is that methanogens are utilizing non-competitive substrates to produce methane within the sulfate-reducing zone. Taken together, these results form the basis of a new model for sulfate reduction and methanogenesis in marine sediments. The biogeochemical end-members of the model are: (1) minimal sulfate reduction, (2) complete sulfate reduction followed by methanogenesis, and (3) overlapping sulfate reduction and methanogenesis with no transition zone.