829 resultados para 172-1064


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean circulation may have undergone reductions and reinvigorations in the past closely tied to regional climate changes. Measurements of 231Pa/230Th ratios in a sediment core from the Bermuda Rise have been interpreted as evidence that the Atlantic Meridional Overturning Circulation (AMOC) was weakened or completely eliminated during a period of catastrophic iceberg discharges (Heinrich-Event 1, H1). Here we present new data from the Bermuda Rise that show further 231Pa/230Th peaks during Heinrich-2 (H2) and Heinrich-3 (H3). Additionally, a tight correlation between diatom abundances (biogenic silica) and 231Pa/230Th is discovered in this core. Our results redirect the interpretation of 231Pa/230Th from the Bermuda Rise as a proxy for ocean circulation towards a proxy that reacts highly sensitive to changes of particle composition and water mass properties.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments from Sites 1057 and 1061 of Ocean Drilling Program Leg 172 on the Blake Outer Ridge exhibit nearly isotropic magnetic susceptibility. Resolving the degree of anisotropy of magnetic susceptibility proved difficult in many samples because of the generally weak magnetic susceptibility of the sediments relative to the noise level of the susceptibility meters used. Lineation varies from 1.0 to 1.013 and foliation varies from 1.0 to 1.08 in the samples that pass rejection criteria. In general the foliation is better resolved than the lineation, particularly at Site 1061, where the foliation exhibits long-term trends that mimic the mean susceptibility. The changes in the foliation at this site are likely the result of changes in the magnetic mineralogy of the sediment. The poorly developed or absent magnetic fabric in the sediments overall can be attributed to high carbonate concentrations and to a circulation regime that was diffuse or with currents too weak to effectively align magnetic particles.