811 resultados para 160.2540
Resumo:
Ferromanganese concretions from the Svalbard shelf in the Barents Sea show slightly convex shale-normalized REE patterns with no Eu anomalies. Concretions from the Gulf of Bothnia, northern part of the Baltic Sea, exhibit an enrichment of light REE and negative Eu anomalies. This difference is interpreted as a consequence of different conveyor mechanisms of the REE to the sediment. It is suggested that dissolving biogenic debris contributes to the convex pattern obtained in the Barents Sea, whereas an inorganic suspended fraction with scavenged REE is the main carrier in the Gulf of Bothnia. During oxic diagenesis in the sediment, the scavenged REE are set free into the porewater and contribute to the distribution pattern in concretions found in the Gulf of Bothnia. Small Mn-rich spheroidal concretions are enriched two to five times in REE compared to average shale, whereas Mn-poor flat concretions are low in REE. Specific surface area of the concretion and the depth of burial in the oxidized surface sediment are two factors that strongly affect the enrichment of the REE. Weak Ce anomalies are present in the analysed concretions and a redox level dependence is seen.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 160 undertaken by the Woods Hole Oceanographic Institution from Januray until April 1950. A total of 23 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
DSDP 160 forms part of a series of sites in the eastern equatorial Pacific on the west flank of the East Pacific Rise. Earlier legs of the Deep Sea Drilling Project, in particular Legs 5 and 9, have reported sediments rich in oxides of iron and perhaps other transition metals just above basement in the eastern Pacific. These occurrences roughly define a broad zone on the west flank of the rise. Site DSDP 160 lies on this trend and were selected by the Pacific Site Selection Panel to test the extent of such deposits.
Resumo:
Organic-rich sediments (sapropels) deposited in the Mediterranean are presumed to have formed during periods of increased productivity, and/or deep water oxygen depletion, possibly including the development of sulfidic conditions (euxinia). Geochemical redox proxies (Re, Mo, Mo isotopes, V, Fe/Al, and multiple S isotopes) in 8 sapropels from the Pleistocene confirm water column euxinic conditions of varying intensity during sapropel deposition. These same proxies indicate an oxic origin for hemipelagic sediments deposited between sapropel-forming episodes. In one intensively sampled sapropel, deposited between 1.450 and 1.458 Ma, changing concentrations of organic carbon, Ba, Re, Mo, V, and Fe/Al track one another closely, reflecting coupling between water column euxinia and biological productivity. Multiple S isotope data from this sapropel suggest that the redox interface where oxidative sulfur cycling occurred was present in the sediments during hemipelagic sedimentation, but moved into the water column during sapropel deposition. Molybdenum isotopes of these 8 sapropels encompass a range of values (d98Mo = +0.2 to +1.7), but are all 98Mo-depleted relative to seawater (d98Mo = +2.3 per mil), suggesting that quantitative removal of Mo did not occur. This finding contrasts with modern Black Sea sediments. In general, Re/Mo ratios in sapropels are greater than in modern seawater, implying that the water column was not sufficiently sulfidic during sapropel-forming episodes to induce complete removal of both these elements. Surprisingly, the heaviest d98Mo values are found within hemipelagic sediments. Very few of the hemipelagic samples preserve the negative d98Mo values commonly associated with modern oxic marine sediments. Many of the hemipelagic samples also contained higher concentrations of Re and Mo than are common in oxic sediments. These features may be attributable to diffusion from the sapropels of a 98Mo-enriched component into the hemipelagic sediments.