808 resultados para Mixed Layer Depth(MLD)
Resumo:
Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
Resumo:
Planktonic foraminifera are used to identify late Pliocene-Quaternary near surface water masses on the northeastern flank of Chatham Rise by comparison with faunas in core-tops east of New Zealand. In an overview study, distance measures, ordinations, and discriminant analysis are applied to 32 faunas from Site 1123B to identify similar faunas among 35 core-tops between 35 and 61°S east of New Zealand. Many Site 1123B faunas in the 2.72 myr interval sampled compare with those in core-tops on the northern side of Chatham Rise from a similar latitude, and are identified as transitional zone assemblages now associated with the subtropical gyre. This result is consistent with studies of late Quaternary planktonic foraminifera from this region and suggests that, typically, the Subtropical Front was locked to Chatham Rise through glacial and interglacial periods, at least back to the late Pliocene. However, a fauna at ca. 1.17 Ma compares with subpolar assemblages in core-tops between 44 and 48°S and identifies cooler surface water. Expectedly, closer sampling may reveal additional periods when southern water moved over the northeastern flank of Chatham Rise. Although the dominance of Globorotalia inflata, a species typical of the southern margin of subtropical gyres, is a principal feature of Site 1123B faunas, in a minority it is replaced as the most abundant species by dextral populations of Neogloboquadrina pachyderma, particularly about the time of the middle Pleistocene transition. Close analogues of these variant transitional assemblages are not present in core-tops about Chatham Rise but sediment trap and coretop data from other regions suggest that they identify high fertility in the mixed layer associated with upwelling or mixing of water masses. The proportion of sinistrally coiled Neogloboquadrina pachyderma rises to ca. 0.6 between ca. 2.45 and 2.57 Ma, soon after the intensification of Northern Hemisphere glaciation. Although the coiling data indicate subantarctic near surface water, the species remains rare. As the faunas retain their transitional zone character, only minor entrainment of subantarctic water may have occurred.
Resumo:
Large amounts of dust responsible for bright colors of atmospheric precipitation in the temperate, subpolar and polar zones of the northern hemisphere have been rarely observed. In the twentieth century and in the beginning of the twenty first century in the Northern European Russia such events were not registered up to March 25-26, 2008. At that time in some parts of the Arkhangel'sk region, Komi Republic, and Nenets Autonomous Area atmospheric precipitation as sleet and rain responsible for sand- and saffron colors of ice crust formation on the snow surface was observed. During detailed mineralogical, geochemical, pollen, diatom and meteorological investigations it was established that semidesert and steppe regions of the Northwest Kazakhstan, Volgograd and Astrakhan' regions, and Kalmykia are the main sources of the yellow dust.
Resumo:
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.
Resumo:
Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
Resumo:
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.
Accompanying wind measurements for bottle data of cruise B8/86 during the MRI-LDEO cooperative study
Resumo:
A 120 m-long ice core was drilled in 2012 on the Derwael Ice Rise, coastal Dronning Maud Land, East Antarctica. Water stable isotopes (d18O and dD) stratigraphy is supplemented by discontinuous major ion profiles and continuous electrical conductivity measurements. The base of the ice core is dated to AD 1759 ± 16, providing a climate proxy for the past ~250 years. This data set presents the core's annual layer thickness history in meters water equivalent for the oldest age-depth estimate before correction for the influence of ice deformation.
Resumo:
The 106 m long composite profile from site 2 of ICDP expedition 5022 (PASADO) at Laguna Potrok Aike documents a distinct change in sedimentation patterns from pelagic sediments at the top to dominating mass movement deposits at its base. The main lithological units correspond to the Holocene, to the Lateglacial and to the last glacial period and can be interpreted as the result of distinct environmental variations. Overflow conditions might have been achieved during the last glacial period, while signs of desiccation are absent in the studied sediment record. Altogether, 58 radiocarbon dates were used to establish a consistent age-depth model by applying the mixed-effect regression procedure which results in a basal age of 51.2 cal. ka BP. Radiocarbon dates show a considerable increase in scatter with depth which is related to the high amount of reworking. Validation of the obtained chronology was achieved with geomagnetic relative paleointensity data and tephra correlation.
Resumo:
Abundance of noble metals and bulk chemical composition have been studied in bottom sediments of the Chukchi Sea. Distribution of noble metals and their correlation with major and trace elements in the sediments have been analyzed using multicomponent statistics. It was established that average contents of noble metals in the bottom sediments of the Chukchi Sea significantly exceed those both in shelf terrigenous sediments and stratisphere. Osmium and iridium enrich mixed and pelitic sediments relative to shallow-water sediments and their influx is presumably determined by erosion of coastal and bottom unconsolidated deposits. High Ag, Ru, Au, and Pt contents were identified in clayey sediments enriched in biogenic elements in the some areas of the Southern Chukchi plain (Chukchi Sea) confined to intersection zones of submeridional and sublatitudinal structures of the graben-rift system, which formed in Mesozoic and activated in Late Cenozoic.