969 resultados para Achnanthes sp., biomass as carbon, fractionated
Resumo:
Qualitative and quantitative evaluation of the finely dispersed fraction of particulate organic matter in sea water is given. It is demonstrated that in the euphotic zone of high productivity waters this fraction constitutes 86%, in waters with low productivity 61%, and in deep waters (>200 m) 53% of the organic carbon in particulate matter. Formation of the finely dispersed fraction and its role in distribution of energy in the detrital food chain of the ecosystem are discussed.
Resumo:
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.
Resumo:
Production (abundance and biomass) and net calcification rates of the coccolithophorid Pleurochrysis carterae under different partial pressures of CO2 (pCO2) were examined using short (15, 24 and 39 h), long (7 d) and dark (7 d) incubation experiments. Short incubations were conducted at ambient, 500 and 820 ppm pCO2 levels in natural seawater that was enriched with nutrients and inoculated with P. carterae. Long incubations were conducted at ambient and 1200 ppm pCO2 levels in natural seawater (0.2 µm filtered as well as unfiltered) that was enriched with nutrients and inoculated with P. carterae. Dark incubations were conducted at ambient and 1200 ppm pCO2 in unfiltered seawater that was inoculated with P. carterae. The abundance and biomass of coccolithophorids increased with pCO2 and time. The abundance and biomass of most noncalcifying phytoplankton also increased, and were hardly affected by CO2 inputs. Net calcification rates were negative in short incubations during the pre-bloom phase regardless of pCO2 levels, indicating dissolution of calcium carbonate. Further, the negative values of net calcification in short incubations became less negative with time. Net calcification rates were positive in long incubations during blooms regardless of pCO2 level, and the rate of calcification increased with pCO2. Our results show that P. carterae may adapt to increased (~1200 ppm) pCO2 level with time, and such increase has little effect on the ecology of noncalcifying groups and hence in ecosystem dynamics. In dark incubations, net calcification rates were negative, with the magnitude being dependent on pCO2 levels.