789 resultados para North-Eastern Atlantic


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have integrated Oligocene to lower upper Miocene planktonic foraminifer biostratigraphy with benthic foraminifer (Cibicidoides spp.) stable isotope records for two sites drilled on opposite sides of the Sierra Leone Rise in the eastern equatorial Atlantic Ocean. Deep Sea Drilling Project Site 366 (2853 m present water depth; 2200-2800 m paleodepth) recovered an Oligocene to upper Miocene record with a minor unconformity in the "middle" Oligocene and a condensed middle Miocene section. Ocean Drilling Program Site 667 (3529 m present depth; 3000-3500 m paleodepth) recovered an apparently continuous "middle" Oligocene to lower middle Miocene record and a similar condensed middle Miocene section. The Oligocene to lower Miocene sections were deposited at similar sedimentation rates (~11-16 m/m.y.). Stable isotope stratigraphy proved to be useful in establishing intra- and interbasinal correlations. In addition to the well-known earliest Oligocene and middle Miocene S180 increases, a distinct d18O increase occurred near the Oligocene/Miocene boundary. Carbon isotope variations provide similar potential for improving correlations; for example, a d13C increase occurred near the Oligocene/Miocene boundary in concert with increased d18O values. There was little d13C difference between the western Atlantic and eastern Atlantic basins during the late Oligocene and most of the middle Miocene; in contrast, eastern basin d13C values were slightly lower than those in the western basins during the earliest Oligocene (about 35-33 Ma) and early Miocene (about 22-18 Ma).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5' N to 27°28.1' S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C. paululus, C. arcuicornis, C. parapergens, and C. pergens populations was concentrated in the colder, deeper water layers below the thermocline, thereby avoiding the warm surface waters. C. lividus was found only at the most northern and C. ingens only at the most southern stations. Both species were found almost exclusively in the upper 50 m. The distinct differences in abundance and horizontal and vertical distribution suggest a strong ecological differentiation among the Clausocalanus species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Study of cores taken from the north-eastern Mediterranean during cruise 4/72 of the RRV Shackleton, using a Lehigh 4-inch hydroplastic gravity corer and containing layered organic structures encrusted with either manganese or iron minerals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of temporal changes of ocean circulation and deep-water ventilation often rely on d13C records of epibenthic foraminifer Cibicidoides wuellerstorfi. However, primary productivity related overprints may distort the signal and simulate a chemical age of ambient water mass that is too old and simulates poorly ventilated ambient bottom waters. To further constrain the use of C. wuellerstorfi d13C records from high-productivity areas, we analyzed a 14CAMS-dated gravity core from the upwelling regime off northwest Africa at 12°N. We compare this new record with 37 radiocarbon dated d13C records from the eastern Atlantic Ocean between 45°N and 25°S that are bathed by the same water mass. Only during Heinrich events 1 and 2, when the investigated core site off northwest Africa experienced year-round, sustained deposition of organic matter, the d13C values at this site faithfully record deep-water ventilation states. During times of predominantly seasonal deposition of fresh phytodetritus, however, d13C values were significantly lower than at the reference sites. This underscores that reconstruction of paleocirculation and deep ocean ventilation using C. wuellerstorfi d13C from regions that experienced seasonal phytodetritus deposition needs to be validated by additional proxies that are not affected by local productivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) was extracted with solid phase extraction (SPE) from 137 water samples from different climate zones and different depths along an Eastern Atlantic Ocean transect. The extracts were analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI). D14C analyses were performed on subsamples of the SPE-DOM. In addition, the amount of dissolved organic carbon was determined for all water and SPE-DOM samples as well as the yield of amino sugars for selected samples. Linear correlations were observed between the magnitudes of 43% of the FT-ICR mass peaks and the extract D14C values. Decreasing SPE-DOM D14C values went along with a shift in the molecular composition to higher average masses (m/z) and lower hydrogen/carbon (H/C) ratios. The correlation was used to model the SPE-DOM D14C distribution for all 137 samples. Based on single mass peaks a degradation index was developed to compare the degradation state of marine SPE-DOM samples analyzed with FT-ICR MS. A correlation between D14C, degradation index, DOC values and amino sugar yield supports that SPE-DOM analyzed with FT-ICR MS reflects trends of bulk DOM. A relative mass peak magnitude ratio was used to compare aged SPE-DOM and fresh SPE-DOM regarding single mass peaks. The magnitude ratios show a continuum of different reactivities for the single compounds. Only few of the compounds present in the FT-ICR mass spectra are expected to be highly degraded in the oldest water masses of the Pacific Ocean. All other compounds should persist partly thermohaline circulation. Prokaryotic (bacterial) production, transformation and accumulation of this very stable DOM occurs probably primarily in the upper ocean. This DOM is an important contribution to very old DOM, showing that production and degradation are dynamic processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular stratigraphy of Biogeochemical Oceanic Flux Study core 31K (19°N, 20°10'W) and Ocean Drilling Program Hole 658C (20°45'N, 18°35'W) has been studied for C37 alkenone abundances over the past 80 ka at high resolution (~circa 200-500 years). The derived Uk 37' sea surface temperature record for both cores shows a range of temperatures from about 18°C during the last glacial to 21.5°C during the early Holocene. Both records also reveal changes in sea surface temperature as much as 2°-4°C over a few hundred years, which correlate well with similar abrupt climatic changes observed in cores from elsewhere in the NE Atlantic, associated with 'Heinrich events'. Our results indicate that meltwater produced by these ice-rafting events was transmitted southward by the Canary Current, where it had considerable impact on sea surface temperatures in the subtropical eastern Atlantic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data were collected during various groundfish surveys carried out by IFREMER from October to December between 1997 and 2011, on the eastern continental shelf of the Bay of Biscay and in the Celtic Sea (EVHOE series). The sampling design was stratified according to latitude and depth. A 36/47 GOV trawl was used with a 20 mm mesh codend liner. Haul duration was 30 minutes at a towing speed of 4 knots. Fishing was restricted to daylight hours. Catch weights and catch numbers were recorded for all species and body size measured. The weights and numbers per haul were transformed into abundances per km**2 by considering the swept area of a standard haul (0.069 km**2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reconstructing past detrital flux and provenance in the Southern Ocean provides information about changes in source regions associated with climate variations and transport pathways. We present a Last Glacial Maximum (LGM) to Holocene comparison of 230Th normalised fluxes combined with sediment provenance data (Pb, Nd and Sr isotopes) from a latitudinal core transect in the eastern Atlantic sector of the Southern Ocean (ODP Leg 177 cores). We compare the radiogenic isotopic composition (IC) of detritus in these cores to that of cores proximal to potential source areas. We observe a well-defined latitudinal Holocene gradient in both detrital flux and provenance of sediment. High detrital fluxes in the north are associated with terrigenous material derived from southern Africa, while low detrital fluxes in the south are associated with supply from southern South America, West Antarctica and the South Sandwich Islands. The data suggest that this well-defined Holocene gradient in detrital flux and sediment provenance is controlled by the flow of the Antarctic Circumpolar Current (ACC) and the position of its frontal zones. The LGM is characterised by 2 to 6 times higher than modern detrital fluxes at most ODP Leg 177 sites. The LGM detrital fluxes do not show a latitudinal trend and suggest a greater supply of glaciogenic detritus sourced from southern South America. Glacial Patagonian outwash sediments (< 5 µm fraction) were analysed and compared to the bulk compositions of the marine sediments. The Pb IC of the Patagonian sediments is very similar to the glacial IC of sediments in the Scotia Sea and at ~ 49° S latitude in the eastern Atlantic sector. We propose that the glacial IC of sediments is controlled by increased delivery of Patagonian detritus initially supplied by glaciers and then transported at depth via the ACC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Largely continuous millennial-scale records of benthic d18O, Mg/Ca-based temperature, and salinity variations in bottom waters were obtained from Deep Sea Drilling Project Site 548 (eastern Atlantic continental margin south of Ireland, 1250 m water depth) for the period between 3.7 and 3.0 million years ago. This site monitored mid-Pliocene changes in Mediterranean Outflow Water (MOW) documented by continuously high Nd values between -10.7 and -9. Site 978 (Alboran Sea, 1930 m water depth) provides a complementary record of bottom water variability in the westernmost Mediterranean Sea, which is taken to represent MOW composition at its source. Both sites are marked by a singular and persistent rise in bottom water salinities by 0.7-1.4 psu and in densities by ~1 kg m-3 from 3.5 to 3.3 Ma, which is matched by an average 3 °C increase in bottom water temperatures at Site 548. This event suggests the onset of strongly enhanced deep-water convection in the Mediterranean Sea and a related strengthened MOW flow, which implies a major aridification of the Mediterranean source region. In harmony with model suggestions, the enhanced MOW flow has possibly intensified Upper North Atlantic Deep Water formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[1] We used planktic foraminiferal assemblages in 70 sediment cores from the tropical and subtropical South Atlantic Ocean (10°N-37°S) to estimate annual mean sea surface temperatures (SSTs) and seasonality for the Last Glacial Maximum with a modified version of the Imbrie-Kipp transfer function method (IKTF) that takes into account the abundance of rare but temperature sensitive species. In contrast to CLIMAP Project Members [1981], the reconstructed SSTs indicate cooler glacial SSTs in the entire tropical/subtropical South Atlantic with strongest cooling in the upwelling region off Namibia (7-10°C) and smallest cooling (1-2°C) in the western subtropical gyre. In the western Atlantic, our data support recent temperature estimates from other proxies. In the upwelling regions in the eastern Atlantic, our data conflict with SST reconstructions from alkenones, which may be due to an environmental preference of the alkenone-producing algae or to an underestimation of foraminiferal SSTs due to anomalous high abundances of N. pachyderma (sinistral).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by ~0.1 units, which is equivalent to a 25% increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100% larval mortality within 8 d while control larvae showed 70% survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed.