772 resultados para Mixed-layer budget
Resumo:
Phytoplankton community structure and their physiological response in the vicinity of the Antarctic Polar Front (APF; 44°S to 53°S, centred at 10°E) were investigated as part of the ANT-XXVIII/3 Eddy-Pump cruise conducted in austral summer 2012. Our results show that under iron-limited (< 0.3 µmol/m**3) conditions, high total chlorophyll-a (TChl-a) concentrations (> 0.6 mg/m**3) can be observed at stations with deep mixed layer (> 60 m) across the APF. In contrast, light was excessive at stations with shallower mixed layer and phytoplankton were producing higher amounts of photoprotective pigments, diadinoxanthin (DD) and diatoxanthin (DT), at the expense of TChl-a, resulting in higher ratios of (DD+DT)/ TChl-a. North of the APF, significantly lower silicic acid (Si(OH)4) concentrations (< 2 mmol/m**3) lead to the domination of nanophytoplankton consisting mostly of haptophytes, which produced higher ratios of (DD+DT)/TChl-a under relatively low irradiance conditions. The Si(OH)4 replete (> 5 mmol/m**3) region south of the APF, on the contrary, was dominated by microphytoplankton (diatoms and dinoflagellates) with lower ratios of (DD+DT)/TChl-a, despite having been exposed to higher levels of irradiance. The significant correlation between nanophytoplankton and (DD+DT)/TChl-a indicates that differences in taxon-specific response to light are also influencing TChl-a concentration in the APF during summer. Our results reveal that provided mixing is deep and Si(OH)4 is replete, TChl-a concentrations higher than 0.6 mg/m**3 are achievable in the iron-limited APF waters during summer.
Resumo:
Evolution of the planktic foraminiferal lineage Globorotalia (Fohsella) occurred during the Miocene between 23.7 and 11.8 Ma and forms the basis for stratigraphic subdivision of the early middle Miocene (Zones N 10 through N 12). Important morphologic changes within the G. (Fohsella) lineage included a marked increase in test size, a transition from a rounded to an acute periphery, and the development of a keel in later forms. We found that the most rapid changes in morphology of G. (Fohsella) occurred between 13 and 12.7 Ma and coincided with an abrupt increase in the delta18O ratios of shell calcite. Comparison of isotopic results of G. (Fohsella) with other planktic foraminifers indicate that delta18O values of the lineage diverge from surface-dwelling species and approach deep-dwelling species after 13.0 Ma, indicating a change in depth habitat from the surface mixed layer to intermediate depth near the thermocline. Isotopic and faunal evidence suggests that this change in depth stratification was associated with an expansion of the thermocline in the western equatorial Pacific. After adapting to a deeper water habitat at 13.0 Ma, the G. (Fohsella) lineage became extinct abruptly at 11.8 Ma during a period when isotopic and faunal evidence suggest a shoaling of the thermocline. Following the extinction of G. (Fohsella), the ecologic niche of the lineage was filled by the Globorotalia (Menardella) group, which began as a deep-water form and later evolved to an intermediate-water habitat. We suggest that the evolution of G. (Fohsella) and G. (Menardella) were tightly linked to changes in the structure of the thermocline in the western equatorial Pacific.
Resumo:
Abundance of noble metals and bulk chemical composition have been studied in bottom sediments of the Chukchi Sea. Distribution of noble metals and their correlation with major and trace elements in the sediments have been analyzed using multicomponent statistics. It was established that average contents of noble metals in the bottom sediments of the Chukchi Sea significantly exceed those both in shelf terrigenous sediments and stratisphere. Osmium and iridium enrich mixed and pelitic sediments relative to shallow-water sediments and their influx is presumably determined by erosion of coastal and bottom unconsolidated deposits. High Ag, Ru, Au, and Pt contents were identified in clayey sediments enriched in biogenic elements in the some areas of the Southern Chukchi plain (Chukchi Sea) confined to intersection zones of submeridional and sublatitudinal structures of the graben-rift system, which formed in Mesozoic and activated in Late Cenozoic.
Resumo:
The comprehensive isotopic composition of atmospheric nitrate (i.e., the simultaneous measurement of all its stable isotope ratios: 15N/14N, 17O/16O and 18O/16O) has been determined for aerosol samples collected in the marine boundary layer (MBL) over the Atlantic Ocean from 65°S (Weddell Sea) to 79°N (Svalbard), along a ship-borne latitudinal transect. In nonpolar areas, the d15N of nitrate mostly deriving from anthropogenically emitted NOx is found to be significantly different (from 0 to 6 per mil) from nitrate sampled in locations influenced by natural NOx sources (-4 ± 2) per mil. The effects on d15N(NO3-) of different NOx sources and nitrate removal processes associated with its atmospheric transport are discussed. Measurements of the oxygen isotope anomaly (D17O = d17O - 0.52 × d18O) of nitrate suggest that nocturnal processes involving the nitrate radical play a major role in terms of NOx sinks. Different D17O between aerosol size fractions indicate different proportions between nitrate formation pathways as a function of the size and composition of the particles. Extremely low d15N values (down to -40 per mil) are found in air masses exposed to snow-covered areas, showing that snowpack emissions of NOx from upwind regions can have a significant impact on the local surface budget of reactive nitrogen, in conjunction with interactions with active halogen chemistry. The implications of the results are discussed in light of the potential use of the stable isotopic composition of nitrate to infer atmospherically relevant information from nitrate preserved in ice cores.
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.