1000 resultados para COMPCORE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predictable in situ production of 230Th from the decay of uranium in seawater, and its subsequent removal by scavenging onto falling particles, provides a valuable tool for normalizing fluxes to the seafloor. We describe a new application, determination of the 232Th that dissolves in the water column and is removed to the seafloor. 232Th is supplied to the ocean in continental minerals, dissolution of which leads to a measurable standing stock in the water column. Sedimentary adsorbed 232Th/230Th ratios have the potential to provide a proxy for estimating the amount of dissolved material that enters the ocean, both today and in the past. Ten core top samples were treated with up to eight different leaching techniques in order to determine the best method for the separating adsorbed from lattice bound thorium. In addition, separate components of the sediments were analyzed to test whether clay dissolution was an important contribution to the final measurement. There was no systematic correlation between the strength of acid used in the leach and the measured 232Th/230Th ratios. In all cases clean foraminifera produced the same ratio as leaches on bulk sediment. In three out of five samples leaches performed on non-carbonate detritus in the <63 µm size fraction were also identical. Without additional water column data it is not yet clear whether there is a simple one to one correlation between the expected deep-water 232Th/230Th and that produced by leaching, especially in carbonate-rich sediments. However, higher ratios, and associated high 232Th adsorbed fluxes, were observed in areas with high expected detrital inputs. The adsorbed fraction was ~35-50% of the total 232Th in seven out of ten samples. Our 230Th normalized 232Th fluxes are reasonable by comparison to global estimates of detrital inputs to the ocean. In nine cases out of ten, the total 230Th-normalized 232Th flux is greater than predicted from the annual dust fall at each specific location, but lower than the average global detrital input from all sources.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 18 million year record of the Ca isotopic composition (d44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. ?44/42Ca in this record averages +0.37+/-0.05 (1 sigma SD) and ranges from +0.21? to +0.52?. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25? lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their d44/42Ca (i.e., by 0.06+/-0.06? (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in d44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (d44/42Ca_w) and for isotope fractionation associated with the production of carbonate sediments (D_sed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of +/-0.05? in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in d44/42Ca_w of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in D_sed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in d44/42Ca_w and D_sed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of fluid flux on petrogenesis in the Tonga-Kermadec Arc was investigated using ion microprobe measurements of B/Be and boron isotope ratios (11B/10B) to document the source and relative volumes of the fluids released from the subducting oceanic plate. We analyzed young lavas from eight different islands along the Tonga-Kermadec Arc, as well as glass shards in volcanic sediments from Ocean Drilling Program (ODP) Site 840, which record the variations in the chemistry of Tonga magmatism since 7 Ma. B/Be is variable (5.8-122), in young Tonga-Kermadec Arc lavas. In contrast, glass shards from around 3 to 4 Ma old volcanic sediments at Site 840 have the highest B/Be values yet reported for arc lavas (18-607). These values are too high to be related simply to a sediment influence on petrogenesis. Together with very high d11B values (-11.6 to +37.5) for the same shards and lavas these data indicate that most of the B is derived from fluid escaped from the subducting altered Pacific oceanic crust, rather than from sediment. High d11B values also reflect large degrees of isotopic fractionation in this cold fast subduction zone. Lower d11B values noted in the Kermadec Arc (17 to -4.4) are related to the influence of sediment eroded from New Zealand and slower convergence. High fluid flux (B/Be) is synchronous in Tonga and the Marianas at 3 to 4 Ma and may be related to acceleration of the Pacific Plate just prior to this time. The timing of maximum B/Be at 3 to 4 Ma correlates with maximum light rare earth (LREE) and high field strength element depletion. This suggests maximum degrees of partial melting at this time. Although thinning of the arc lithosphere during rifting to form the Lau Basin is expected to influence the arc geochemistry, variable aqueous fluid flux from the subducting plate alone appears capable of explaining boron and other trace element systematics in the Tonga-Kermadec Arc with no indication of slab melting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-crystalline barites recovered by deep-sea drilling from Site 684 on the Peru margin and Site 799 in the Japan Sea are highly enriched in the heavy sulfur isotope relative to seawater ( d34S up to +84?). This isotopic composition is consistent with remobilization of biogenic barite triggered by sulfate reduction, and subsequent reprecipitation as a diagenetic barite front. The high levels of barium sulfate in these deposits (10-50%) cannot be explained by a diffusive transport model in sediments experiencing a constant rate of sedimentation. When sedimentation rates change radically, the barite front will remain at a given depth interval leading to large accumulations of barium sulfate. Such conditions may have generated the barite deposits at Site 799. At Site 684, on the other hand, there is evidence that the barite deposits are a result of the tectonically-driven advection of sulfate-bearing fluids through the sediment column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial-interglacial change in deep North Pacific phosphate (PO4) concentration was minimal, which has been taken by some workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox-sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation - and thus respired carbon storage - over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was depleted in oxygen during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which would have lowered atmospheric carbon dioxide (CO2) by sequestering CO2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data would have accounted for a majority of the observed decrease in glacial atmospheric pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Quaternary oxygen (d18O) and carbon (d13C) isotopic records for the benthic foraminifer Uvigerina and the planktonic foraminifer Globigerina bulloides are presented for the upper 20 meters composite depth sediment sequence of Ocean Drilling Program Site 1014, Tanner Basin, in the outer California Borderland province. The benthic oxygen isotopic record documents a continuous >160-k.y. sequence from marine isotope Stage (MIS) 6 to the present day. The record closely resembles other late Quaternary North Pacific benthic isotope records, as well as the well-dated deep-sea sequence (SPECMAP), and thus provides a detailed chronologic framework. Site 1014 provides a useful record of the California response to climate change as it enters the southern California Border-land. Sedimentation rates are relatively constant and high (~11.5 cm/k.y. ). The planktonic foraminiferal record is well pre-served except during marine isotope Substages 5b and 5d, when normally high G. bulloides abundance is strongly diminished as a result of dissolution. The planktonic oxygen isotopic shift of ~3 per mil between the last glacial maximum and the Holocene suggests a surface water temperature shift of <7°C, similar to estimates from Hole 893A (Leg 146) to the north. Unlike Santa Barbara Basin, G. bulloides d18O values during the last interglacial (MIS 5) at Site 1014 were significantly higher than during the Holocene. In particular, marine isotope Substage 5e (Eemian) was ~0.8 per mil higher. This is unlikely to reflect a cooler Eemian but is instead the result of preferential dissolution of thin-shelled (low d18O) specimens during this interval. In this mid-depth basin, a large benthic d18O shift during Termination I suggests dramatic temperature and salinity changes in response to switches in the source of North Pacific Intermediate Water. Although d13C values of the planktonic foraminifer G. bulloides are in disequilibria with seawater and hence interpretations are limited, the G. bulloides record exhibits several negative d13C excursions found at other sites in the region (Sites 1017 and 893). This indicates a response of G. bulloides d13C to regional surface water processes along the southern California margin. A general increase in benthic carbon isotopic values (-1.75 per mil to -0.75 per mil) in Tanner Basin during the last 200 k.y. is overprinted with smaller fluctuations correlated with climate change. The coolest intervals during the last glacial maximum (MISs 2 and 4) exhibit lower benthic d13C values, which correlate with global 13C shifts. The opposite relationship is exhibited during the last interglacial before 85 ka, when lower benthic d13C values are associated with warmer intervals (marine isotope Substages 5c and 5e) of the last interglacial. These time intervals were also marked by decreased intermediate water ventilation. Increased dissolution and organic accumulation during Substages 5b and 5d are anticorrelated with the benthic d13C record. These results suggest that a delicate balance in intermediate water d13C has existed between the relative influences of global 13C and regional ventilation changes at the 1165-m water depth of Site 1014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.