783 resultados para benthic faunal species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed foraminiferal and nannofossil assemblages and stable isotopes in samples from ODP Hole 807A on the Ontong Java Plateau in order to evaluate productivity and carbonate dissolution cycles over the last 550 kyr (kilo year) in the western equatorial Pacific. Our results indicate that productivity was generally higher in glacials than during interglacials, and gradually increased since MIS 13. Carbonate dissolution was weak in deglacial intervals, but often reached a maximum during interglacial to glacial transitions. Carbonate cycles in the western equatorial Pacific were mainly influenced by changes of deep-water properties rather than by local primary productivity. Fluctuations of the estimated thermocline depth were not related to glacial to interglacial alternations, but changed distinctly at ~280 kyr. Before that time the thermocline was relatively shallow and its depth fluctuated at a comparatively high amplitude and low frequency. After 280 kyr, the thermocline was deeper, and its fluctuations were at lower amplitude and higher frequency. These different patterns in productivity and thermocline variability suggest that thermocline dynamics probably were not a controlling factor of biological productivity in the western equatorial Pacific Ocean. In this region, upwelling, the influx of cool, nutrient-rich waters from the eastern equatorial Pacific or of fresh waters from rivers have probably never been important, and their influence on productivity has been negligible over the studied period. Variations in the inferred productivity in general are well correlated with fluctuations in the eolian flux as recorded in the northwestern Pacific, a proxy for the late Quaternary history of the central East Asian dust flux into the Pacific. Therefore, we suggest that the dust flux from the central East Asian continent may have been an important driver of productivity in the western Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a previous 16-month seasonal study on living (stained) benthic foraminifera from two fjords on the Swedish west coast, it was reported that foraminifera proliferated in response to phytodetritus input; the strongest response came from the opportunistic species Stainforthia fusiformis. In this study, our objective was to find out if that phytodetritus input resulted in a change in the carbon isotopic composition of the foraminiferal tests. We also wanted to examine if variations in salinity and temperature (due to seasonality or deep-water exchanges) were reflected in the delta18O values. From S. fusiformis that were obtained from the Havstens Fjord (20 m) and the Gullmar Fjord (119 m) during the 16-month study, we developed a time series of delta18O and delta13C. After the spring blooms in the Havstens and the Gullmar Fjord, decreases of about 0.2 per mil to 0.3 per mil in the foraminiferal delta13C values were noted; in the Gullmar Fjord after the autumn blooms, decreases of the same order were also noted. Comparing the Havstens and the Gullmar Fjord, we found a 1 per mil difference in both delta13C and delta18O; we attribute this to hydrographic differences between the two fjords. Using calculated values of delta18O, together with the measured ones, we noticed that S. fusiformis in the Gullmar Fjord seems to calcify close to equilibrium with respect to the oxygen isotopes. During autumn, water temperatures were relatively high in the Havstens Fjord, and foraminiferal abundance in the fjord was also high after a phytodetritus input; but, the measured delta18O values do not reflect these higher temperatures. This apparently contradictory combination of results might be explained by a varying delta18O composition of the water during the year, which counterbalances the temperature effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon isotope and benthic foraminiferal data from Blake Outer Ridge, a sediment drift in the western North Atlantic (Ocean Drilling Program Sites 994 and 997, water depth ~ 2800 m), document variability in the relative volume of Southern Component (SCW) and Northern Component Waters (NCW) over the last 7 Ma. SCW was dominant before ~5.0 Ma, at ~3.6-2.4 Ma, and 1.2-0.8 Ma, whereas NCW dominated in the warm early Pliocene (5.0-3.6 Ma), and at 2.4-1.2 Ma. The relative volume of NCW and SCW fluctuated strongly over the last 0.8 Ma, with strong glacial-interglacial variability. The intensity of the Western Boundary Undercurrent was positively correlated to the relative volume of NCW. Values of Total Organic Carbon (TOC) were > 1.5% in sediments older than ~ 3.8 Ma, and not correlated to high primary productivity indicators, thus may reflect lateral transport of organic matter. TOC values decreased during the intensification of the Northern Hemisphere Glaciation (NHG, 3.8-1.8 Ma). Benthic foraminiferal assemblages underwent major changes when the sites were dominantly under SCW (3.6-2.4 and 1.2-0.8 Ma), coeval with the 'Last Global Extinction' of elongate, cylindrical deep-sea benthic foraminifera, which has been linked to cooling, increased ventilation and changes in the efficiency of the biological pump. These benthic foraminiferal turnovers were neither directly associated with changes in dominant bottom water mass nor with changes in productivity, but occurred during global cooling and increased ventilation of deep waters associated with the intensification of the NHG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five short cores sub-sampled from box cores from three sites in the eastern Weddell Sea off Antarctica and in the eastern Pacific off southern California, covering a range in water depth from 500 to 2000 m, were analysed for the down-core distribution of live (stained with Rose Bengal) and dead benthic foraminifera. In the California continental borderland, Planulina ariminensis, Rosalina columbiensis and Trochammina spp. live attached to agglutinated polychaetes tubes that rise above the sedimentwater interface. Bolivina spissa lives exclusively in or on the uppermost sediment. Stained specimens of Chilostomella ovoidea are found down to 6 cm within the sediment and specimens of Globobulimina pacifica down to a maximum of 8 cm. Delta13C values of live G. pacifica decrease with increasing depth from the sediment surface down to 7 cm core depth, indicating that this infaunal species utilizes13C-depleted carbon from pore waters. In the dead, predominantly calcareous benthic forminiferal assemblage, selective dissolution of small delicate tests in the upper sediment column causes a continuous variation in species proportions. In the eastern Weddell Sea, the calcareous Bulimina aculeata lives in a carbonate corrosive environment exclusively in or on the uppermost sediment. The arenaceous Cribrostomoides subglobosum, Recurvoides contortus and some Reophax species are frequently found within the top 4 cm of the sediment, whereas stained specimens of Haplophragmoides bradyi, Glomospira charoides and Cribrostomoides wiesneri occur in maximum abundance below the uppermost 1.5 cm. Species proportions in the dead, predominantly arenaceous, benthic foraminiferal assemblage change in three distinct steps. The first change is caused by calcite dissolution at the sediment-water interface, the second coincides with the lower boundary of intense bioturbation, and the third results from the geochemical shift from oxidizing to reducing conditions below a compacted ash layer.