801 resultados para Western Indian Ocean
Resumo:
High-resolution planktonic and benthic stable isotope records from Ocean Drilling Program Site 1087 off southeast Africa provide the basis for a detailed study of glacial-interglacial (G-IG) cycles during the last 500 k.y. This site is located in the Southern Cape Basin at the boundary of the coastal upwelling of Benguela and close to the gateway between the South Atlantic and the Indian Oceans. It therefore monitors variations of the hydrological fronts associated with the upwelling system and the Atlantic-Indian Ocean interconnections, in relation to global climate change. The coldest period of the last 500 k.y. corresponds to marine isotope Stage (MIS) 12, when surface water temperature was 4°C lower than during the last glacial maximum (LGM) as recorded by the surface-dwelling foraminifer Globigerinoides ruber. The warmest periods occurred during MISs 5 and 11, a situation slightly different to that observed at Site 704, which is close to the Polar Front Zone, where there is no significant difference between the interglacial stages for the past 450 k.y., except the long period of warmth during MIS 11. The planktonic and benthic carbon isotope records do not follow the G-IG cycles but show large oscillations related to major changes in the productivity regime. The largest positive 13C excursion between 260 and 425 ka coincides with the global mid-Brunhes event of carbonate productivity. The oxygen and carbon isotopic gradients between surface and deep waters display long-term changes superimposed on rapid and high-frequency fluctuations that do not follow the regular G-IG pattern; these gradients indicate modifications of the temperature, salinity, and productivity gradients due to changes in the thermocline depth, the position of the hydrological fronts, and the strength of the Benguela Current.
Resumo:
The upper Miocene to Pleistocene sediments recovered at ODP Sites 745 and 746 in the Australian-Antarctic Basin are characterized by cyclic facies changes. Sedimentological investigations of a detailed Quaternary section reveal that facies A is dominated by a high content of siliceous microfossils, a relatively low terrigenous sediment content, an ice-rafted component, low concentrations of fine sediment particles, and a relatively high smectite content. This facies corresponds to interglacial sedimentary conditions. Facies B, in contrast, is characteristic of glacial conditions and is dominated by a large amount of terrigenous material and a smaller opaline component. There is also a prominent ice-rafted component. The microfossils commonly are reworked and broken. The clay mineral assemblages show higher proportions of glacially derived illite and chlorite. A combination of four different processes, attributed to glacial-interglacial cycles, was responsible for the cyclic facies changes during Quaternary time: transport by gravity, ice, and current and changes in primary productivity. Of great importance was the movement of the grounding line of the ice shelves, which directly influenced the intensity of ice rafting and of gravitational sediment transport to the deep sea. The extension of the ice shelves was also responsible for the generation of cold and erosive Antarctic Bottom Water, which controlled the grain-size distribution, particularly of the fine fraction, in the investigated area.
Resumo:
Palynomorphs were studied in samples from Ocean Drilling Program (ODP) Leg 189, Hole 1168A (slope of the western margin of Tasmania; 2463 m water depth). Besides organic-walled dinoflagellate cysts (dinocysts), broad categories of other palynomorphs were quantified in terms of relative abundance. In this contribution, we provide an overview of the early late Eocene-Quaternary dinocyst distribution and illustrate main trends in palynomorph distribution. Dinocyst species throughout Hole 1168A are largely cosmopolitan with important contributions of typical low-latitude taxa and virtual absence of endemic Antarctic taxa. Dinocyst stratigraphic distribution broadly matches that known from the Northern Hemisphere and equatorial regions, although significant differences are noted. Selected potentially biochronostratigraphically useful events are summarized. The distribution of dinocysts in the middle-upper Miocene interval is rather patchy, probably due to prolonged exposure to oxygen. An important general aspect in the dinocyst assemblages is the near absence of Antarctic endemic species and the apparent influence of relatively warm waters throughout the succession at Site 1168. General palynomorph distribution indicates continued deepening from an initial shallow, even restricted, marine setting from late Eocene-Quaternary times. A curious massive influx of small skolochorate acritarchs is recorded throughout the late early-early middle Miocene; the significance of this signal is not yet understood. A general long-term oligotrophic nature of the surface waters influencing Site 1168 is suggested from the low abundance of (proto) peridinioid, presumably heterotrophic, species. The overall dinocyst distribution pattern corresponds to the long-term existence of a Leeuwin-like current influencing the region, including Site 1168, confirming results of earlier studies on other microfossil groups. The occasional influence of colder surface water conditions is, however, also apparent, notably during the late Pliocene-Quaternary, indicating the potential of high-resolution dinocyst analysis for future paleoceanographic studies.
Resumo:
The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.
Resumo:
We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.
Resumo:
Hole 1105A penetrated 158 m of gabbros at a site offset 1.3 km east-northeast from Hole 735B on the Atlantis Bank near the Atlantis II Fracture Zone. A total of 118 m of dominantly medium- to coarse-grained intercalated Fe-Ti oxide gabbro and olivine gabbro was recovered from Hole 1105A that shows many petrographic features similar to those recovered from the upper part of Hole 735B. The main rock types are distinguished based on the constituent cumulus phases, with the most primitive gabbros consisting of olivine, plagioclase, and clinopyroxene. The inferred crystallization order is subsequently Fe-Ti oxides (ilmenite and titanomagnetite), followed by orthopyroxene, then apatite, and finally biotite. Orthopyroxene appears to replace olivine in a narrow middle interval. The magmatic evolution is likewise reflected in the mineral compositions. Plagioclase varies from An66 to An28. Olivine varies from Fo78 to Fo35. The gap in olivine crystallization occurs between Fo46 and Fo40 and coincides approximately with the appearance of orthopyroxene (~En50). The clinopyroxenes show large compositional variation in Mg/(Mg + Fe total) from 0.84 to 0.51. The nonquadrilateral cations of clinopyroxene similarly show large variations with Ti increasing for the olivine gabbros and decreasing for the Fe-Ti oxide gabbros with the decrease in Mg/(Mg + Fe total). The apatites are mainly flourapatites. The compositional variation in the gabbros is interpreted as a comagmatic suite resulting from fractional crystallization. Pyroxene geothermometry suggests equilibration temperatures from 1100°C and below. The coexisting Fe-Ti oxide minerals indicate subsolidus equilibration temperatures from 900°C for olivine gabbros to 700°C for the most evolved apatite-bearing gabbros. The cryptic variation in the olivine gabbros defines two or three lenses, 40 to 60 m thick, each characterized by a distinct convex zoning with a lower segment indicating upward reverse fractionation, a central maximum, and an upper segment showing normal fractionation. The Fe-Ti oxide gabbros show cryptic variations independent of the host olivine gabbros and reveal a systematic upward normal fractionation trend transgressing host olivine gabbro boundaries. Forward fractional crystallization modeling, using a likely parental magma composition from the Atlantis II Fracture Zone (MgO = 7.2 wt%; Mg/[Mg + Fe2+] = 0.62), closely matches the compositions of coexisting olivine, plagioclase, and clinopyroxene. This modeling suggests cosaturation of olivine, plagioclase, and clinopyroxene from 1155°C and the addition of Fe-Ti oxides from 1100°C. The liquid line of descent initially shows increasing FeO with moderately increasing SiO2. After saturation of Fe-Ti oxides, the liquid strongly decreases in FeO and TiO2 and increases in SiO2, reaching dacitic compositions at ~10% liquid remaining. The calculations indicate that formation of olivine gabbros can be accounted for by <65% fractionation and that only the residual 35% liquid was saturated in Fe-Ti oxides. The modeling of the solid fractionation products shows that both the olivine gabbro and the Fe-Ti oxide gabbros contain very small amounts of trapped liquid (<5%). The implications are that the gabbros represent crystal mush that originated in a recharging and tapping subaxial chamber. Compaction and upward melt migration in the crystal mush appear to have been terminated with relatively large amounts of interstitial liquid remaining in the upper parts of the cumulate mush. This termination may have been caused by tectonic disturbances, uplift, and associated withdrawal of magma into the subaxial dike and sill system. Prolonged compaction and cooling of the trapped melt in the mush formed small differentiated bodies and lenses by pressure release migration and crystallization along syntectonic channels. This resulted in differentiation products along lateral and vertical channelways in the host gabbro that vary from olivine gabbro, to Fe-Ti oxide gabbro, gabbronorite, and apatite gabbros and show large compositional variations independent of the host olivine gabbros.
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
Facultative and obligate oligotrophs have been enumerated in March/April 1990 by the MPN-method with 14C-protein hydrolysate as tracer substrate. Obligate (10-3360 cells/ml) and facultative (110-9000 cells/ml) oligotrophs revealed to be the dominant population above Gunnerus Ridge (65°30'-68°S; 31-35°E) at a depth of 25 m compared with eutrophic bacteria (5 to 260 CFU/ml). Above Astrid Ridge (65-68°S; 8-18°E), obligate (0-1100 cells/ml) and facultative oligotrophs (300-9000 cells/ml) were also abundant but not always dominant. Bacterial biomass above Gunnerus Ridge was only between 7.3 and 43.6% of particulate biomass, but biomass of bacteria above Astrid Ridge amounted from 56.9 to >100% of particulate biomass; an exception was station no. PS16/552 with only 22.2% of bacterial biomass. Ratio of bacterial biomass to particulate biomass was negatively correlated with maximal primary production, complementing the view that phytoplankton was the dominant population above Gunnerus Ridge, whereas bacteria predominated above Astrid Ridge. Eutrophic bacteria were also more abundant above Astrid Ridge, with 3 to 6380 CFU/ml. Total bacteria by acridine orange direct counts amounted from 1 x 10**4 to 34.2 x 10**4 cells/ml. Bacterial biomass above Gunnerus Ridge was 1.8 to 10.7, and above Astrid Ridge 5.7 to 13.6 mg C/m*3. Maximal primary production above Gunnerus Ridge was 4.5 to 11.0, and above Astrid Ridge 2.3 to 3.5 mg C/m**3/d.
Resumo:
Three Antarctic Ocean K/T boundary sequences from ODP Site 738C on the Kerguelen Plateau, ODP Site, 752B on Broken Ridge and ODP Site 690C on Maud Rise, Weddell Sea, have been analyzed for stratigraphic completeness and faunal turnover based on quantitative planktic foraminiferal studies. Results show that Site 738C, which has a laminated clay layer spanning the K/T boundary, is biostratigraphically complete with the earliest Tertiary Zones P0 and P1a present, but with short intrazonal hiatuses. Site 752B may be biostratigraphically complete and Site 690C has a hiatus at the K/T boundary with Zones P0 and P1a missing. Latest Cretaceous to earliest Tertiary planktic foraminiferal faunas from the Antarctic Ocean are cosmopolitan and similar to coeval faunas dominating in low, middle and northern high latitudes, although a few endemic species are present. This allows application of the current low and middle latitude zonation to Antarctic K/T boundary sequences. The most abundant endemic species is Chiloguembelina waiparaensis, which was believed to have evolved in the early Tertiary, but which apparently evolved as early as Chron 30N at Site 738C. Since this species is only rare in sediments of Site 690C in the Weddell Sea, this suggests that a watermass oceanographic barner may have existed between the Indian and Atlantic Antarctic Oceans. The cosmopolitan nature of the dominant fauna began during the last 200,000 to 300,000 years of the Cretaceous and continued at least 300,000 years into the Tertiary. This indicates a long-term environmental crisis that led to gradual elimination of specialized forms and takeover by generalists tolerant of wide ranging temperature, oxygen, salinity and nutrient conditions. A few thousand years before the K/T boundary these generalists gradually declined in abundance and species became generally dwarfed due to increased environmental stress. There is no evidence of a sudden mass killing of the Cretaceous fauna associated with a bolide impact at the K/T boundary. Instead, the already declining Cretaceous taxa gradually disappear in the early Danian and the opportunistic survivor taxa (Ch. waiparaensis and Guembelitria cretacea) increase in relative abundance coincident with the evolution of the first new Tertiary species.
Resumo:
A suite of volcanic and volcaniclastic rocks selected from Ocean Drilling Program Leg 134 Sites 832 and 833 in the North Aoba Basin (Central New Hebrides Island Arc) has been analyzed for Sr, Nd, and Pb isotopes to investigate the temporal evolution of the arc magmatism. This arc shows two unusual features with respect to other western Pacific arcs: 1) subduction is eastdirected; and 2) a major submarine ridge, the d'Entrecasteaux Zone, has been colliding almost perpendicularly with the central part of the arc since about 3 Ma. Volcanic rocks from the upper parts of both holes, generated during the last 2 m.y., show higher 87Sr/86Sr and significantly lower 206Pb/204Pb and 143Nd/144 Nd values compared to those volcanics erupted before the collision of this ridge, as represented by samples from the lower section of both holes, or remote from the collisional region, in the southern part of the arc. These isotopic differences in the respective mantle sources cannot be interpreted in terms of geochemical input into the mantle wedge induced by the collision itself. Rather, they require long term (>500 m.y.) enrichment processes. The enriched mantle source could be, on a regional scale, a DUPAL-type reservoir with strong similarities to the source of Indian Ocean basalts. Isotopic analyses of drilled rocks from the DEZ show that the anomalous, enriched mantle component is not derived from this feature. We currently cannot identify a source for this enriched component, but note that it also exists in Lau Basin backarc volcanics, lavas from the West Philippine Sea, and also some lavas from the Mariana-Izu-Bonin arc.
Resumo:
New results on the petrochemistry and geochemistry of dolerites from the Schirmacher Oasis shed light on the development of the Karoo-Maud plume in Antarctica. The basalts and dolerites are petrologically identical to the rocks of western Dronning Maud Land (DML), which were previously studied and interpreted as a manifestation of the Karoo-Maud plume in Antarctica. The spatial distribution of the dikes suggests eastward spreading of the plume material, up to the Schirmacher Oasis for at least 10 Ma. The geochemical characteristics of magmas from the Schirmacher Oasis reflect the influence of crustal contamination, which accompanied both the ascent and spreading of the plume. The magmas of the initial stage of plume activity (western DML) appeared to be the most contaminated in crustal components. It was found that the geochemical characteristics of Mesozoic magmas from the Schirmacher Oasis are identical to those of enriched tholeiites from the Afanasy Nikitin Rise and the central Kerguelen Plateau (Hole 749), which indicates that their enrichment was related to the ancient material of the Gondwana continent. This was caused by the opening of the Indian Ocean under the influence of the Karoo-Maud plume. This process was peculiar in that it occurred in the presence of nonspreading blocks of varying thickness, for instance, Elan Bank in the central Kerguelen Plateau, and was accompanied by the formation of intraplate volcanic rises, which are documented in the seafloor relief of basins around Antarctica. The geochemical characteristics of igneous rocks from the resulting rises (Afanasy Nikitin, Kerguelen, Naturaliste, and Ninetyeast Ridge) indicate the influence of processes related to crustal assimilation. The magmatism that occurred 40 Ma after the main phase of the Karoo-Maud volcanism at the margins of the adjacent continents of Australia (Bunbury basalts) and India (Rajmahal trapps) could be generated by the Karoo-Maud plume flowing along the developing spreading zone. The plume moved subsequently and was localized at the Kerguelen Plateau, where it occurs at present as an active hotspot.
Resumo:
The biostratigraphic distribution and abundance of lower Oligocene to Pleistocene diatoms is documented from Holes 747A, 747B, 748B, 749B, and 751A drilled during Ocean Drilling Program Leg 120 on the Kerguelen Plateau in the southeast Indian Ocean. The occurrence of middle and upper Eocene diatoms is also documented, but these are rare and occur in discrete intervals. The recovery of several Oligocene to Pleistocene sections with minimal coring gaps, relatively good magnetostratigraphic signatures, and mixed assemblages of both calcareous and siliceous microfossils makes the above four Leg 120 sites important biostratigraphic reference sections for the Southern Ocean and Antarctic continent. A high-resolution diatom zonation divides the last 36 m.y. into 45 zones and subzones. This zonation is built upon an existing biostratigraphic framework developed over the past 20 yr of Southern Ocean/Antarctic deep-sea coring and drilling. After the recent advances from diatom biostratigraphic studies on sediments from Legs 113, 114, 119, and 120, a zonal framework for the Southern Ocean is beginning to stabilize. The potential age resolution afforded by the high-diversity diatom assemblages in this region ranks among the highest of all fossil groups. In addition to the 46 datum levels that define the diatom zones and subzones, the approximate stratigraphic level, age, and magnetic anomaly correlative of more than 150 other diatom datums are determined or estimated. These total 73 datum levels for the Pliocene-Pleistocene, 67 for the Miocene, and 45 for the Oligocene. Greater stratigraphic resolution is possible as the less common and poorly documented species become better known. This high-resolution diatom stratigraphy, combined with good to moderately good magnetostratigraphic control, led to the recognition of more than 10 intervals where hiatuses dissect the Oligocene-Pleistocene section on the Kerguelen Plateau. We propose 12 new diatom taxa and 6 new combination
Resumo:
Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.
Resumo:
Oxygen and carbon isotope stratigraphies are given for the planktonic foraminifer Globoquadrina venezuelana (a deep-dwelling species) at three DSDP sites located along a north-south transect at approximately 133°W across the Pacific equatorial high-productivity zone. The records obtained at Sites 573 and 574 encompass the lower Miocene. At Site 575 the record includes the middle Miocene and extends into the lowermost lower Miocene. The time resolution of the planktonic foraminifer isotope record varies from 50,000 to 500,000 yr. The benthic foraminifer Oridorsalis umbonatus was analyzed for isotope composition at a few levels of Site 575. Isotope stratigraphies for all three sites are compared with carbonate, foraminifer preservation, and grain size records. We identified a number of chemostratigraphic signals that appear to be synchronous with previously recognized signals in the western equatorial Pacific and the tropical Indian Ocean, and thus provide useful tools for chronostratigraphic correlations. The sedimentary sequence at Site 573 is incomplete and condensed, whereas the sequences from Sites 574 and 575 together provide a complete lower Miocene record. The expanded nature of this record, which was recovered with minimum disturbance and provides excellent calcareous and siliceous biostratigraphic control, offers a unique opportunity to determine the precise timing of early Miocene events. Paleomagnetic data from the hydraulic piston cores at Site 575 for the first time allow late early Miocene paleoceanographic events to be tied directly to the paleomagnetic time scale. The multiple-signal stratigraphies provide clues for paleoceanographic reconstruction during the period of preconditioning before the major middle Miocene cooling. In the lowermost lower Miocene there is a pronounced shift toward greater d13C values (by -1%) within magnetic Chron 16 (between approximately 17.5 and 16.5 Ma). The "Chron 16 Carbon Shift" coincides with the cessation of an early Miocene warming trend visible in the d18O signals. Values of d13C remain high until approximately 15 Ma, then decrease toward initial (early Miocene) values near 13.5 Ma. The broad lower to middle Miocene d13C maximum appears to correlate with the deposition of organic-carbon-rich sediments around the margin of the northern Pacific in the Monterey Formation of California and its lateral equivalents. The sediments rimming the Pacific were probably deposited under coastal upwelling conditions that may have resulted from the development of a strong permanent thermocline. Deposition in the upwelling areas occurred partly under anaerobic conditions, which led to the excess extraction of organic carbon from the ocean. The timing of the middle Miocene cooling, which began after the Chron 16 Carbon Shift, suggests that the extraction of organic carbon preconditioned the ocean-atmosphere system for subsequent cooling. A major carbonate dissolution event in the late early Miocene, starting at approximately 18.7 Ma, is associated with the enrichment in 13C. The maximum dissolution is coeval with the Chron 16 Carbon Shift. It corresponds to a prominent acoustic horizon that can be traced throughout the equatorial Pacific.