755 resultados para Columbia University.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time series analyses of atmospheric and oceanic variables in a late Pleistocene record from the northwest Pacific show the complex relationship of the response of various segments of the climate system to changes in the earth's orbit. Most variance spectra of time series from this subarctic record contain frequency peaks with periods corresponding to at least one of the major orbital components of eccentricity, obliquity, or precession. Although the radiolarian faunal (water mass) assemblages have prominent spectral peaks with 41,000-year periods which are coherent with obliquity at this frequency, only the Transitional faunal assemblage contains variance focused at a frequency corresponding to the 100,000-year period of eccentricity. Three of these faunal time series also show variance concentrated at a frequency with a 20,000-year period. These three time series are not coherent at a 20,000-year frequency with either of the dominant spectral peaks of precession. They are coherent, however, with variations in the second harmonic of the obliquity cycle. Changes in obliquity apparently affect siliceous faunal abundances in the northwest Pacific region of this high-latitude site more than variations in eccentricity or precession. Maxima in the time series of quartz abundance occur during low values of eccentricity and high glacial ice volume. Because atmospheric winds serve as the major source of supply of quartz to the sediments at this site, these high quartz values reflect increased aridity at the source region. Except for short periods during interglacials, the characteristics of the surface waters in this region of the subarctic Pacific during much of the last 460,000 years were similar to those which exist today in the Sea of Okhotsk. The spectrum of winter sea surface temperature estimates, derived from siliceous microfaunal abundances, contains dominant frequency peaks at periods of 100,000, 41,000, and 23,000 years which are coherent with eccentricity, obliquity, and precession, respectively. Based upon the relationship of the Subarctic Front with the dominance of specific faunal asemblages, the front was positioned south of its present-day location throughout much of the late Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Late Pleistocene signals of calcium carbonate, organic carbon, and opaline silica concentration and accumulation are documented in a series of cores from a zonal/meridional/depth transect in the equatorial Atlantic Ocean to reconstruct the regional sedimentary history. Spectral analysis reveals that maxima and minima in biogenous sedimentation occur with glacial-interglacial cyclicity as a function of both (1) primary production at the sea surface modulated by orbitally forced variation in trade wind zonality and (2) destruction at the seafloor by variation in the chemical character of advected intermediate and deep water from high latitudes modulated by high-latitude ice volume. From these results a pattern emerges in which the relative proportion of signal variance from the productivity signal centered on the precessional (23 kyr) band decreases while that of the destruction signal centered on the obliquity (41 kyr) and eccentricity (100 kyr) periods increases below ~3600-m ocean depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cores and dredges described in this report were taken during the VEMA 15 Expedition from October 1958 until July 1959 by the Lamont Geological Observatory, Columbia University from the R/V Vema. A total of 410 cores and dredges were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high-resolution delta18O and delta13C records of benthic foraminifera from a 150,000-year long core from the Caribbean Sea indicate that there was generally high delta13C during glaciations and low delta13C during interglaciations. Due to its 1800-m sill depth, the properties of deep water in the Caribbean Sea are similar to those of middepth tropical Atlantic water. During interglaciations, the water filling the deep Caribbean Sea is an admixture of low delta13C Upper Circumpolar Water (UCPW) and high delta13C Upper North Atlantic Deep Water (UNADW). By contrast, only high delta13C UNADW enters during glaciations. Deep ocean circulation changes can influence atmospheric CO2 levels (Broecker and Takahashi, 1985; Boyle, 1988 doi:10.1029/JC093iC12p15701; Keir, 1988 doi:10.1029/PA003i004p00413; Broecker and Peng, 1989 doi:10.1029/GB003i003p00215). By comparing delta13C records of benthic foraminifera from cores lying in Southern Ocean Water, the Caribbean Sea, and at several other Atlantic Ocean sites, the thermohaline state of the Atlantic Ocean (how close it was to a full glacial or full interglacial configuration) is characterized. A continuum of circulation patterns between the glacial and interglacial extremes appears to have existed in the past. Subtracting the deep Pacific (~mean ocean water) delta13C record from the Caribbean delta13C record yields a record which describes large changes in the Atlantic Ocean thermohaline circulation. The delta13C difference varies as the vertical nutrient distribution changes. This new proxy record bears a striking resemblance to the 150,000-year-long atmospheric CO2 record (Barnola et al., 1987 doi:10.1038/329408a0). This favorable comparison between the new proxy record and the atmospheric CO2 record is consistent with Boyle's (1988a) model that vertical nutrient redistribution has driven large atmospheric CO2 changes in the past. Changes in the relative contribution of NADW and Pacific outflow water to the Southern Ocean are also consistent with Broecker and Peng's (1989) recent model for atmospheric CO2 changes.