877 resultados para Antarctic Ocean
Resumo:
Brachyuran and anomuran decapod crabs do not occur in the extremely cold waters of the Antarctic continental shelf whereas caridean and other shrimp-like decapods, amphipods and isopods are highly abundant. Differing capacities for extracellular ion regulation, especially concerning magnesium, have been hypothesised to determine cold tolerance and by that the biogeography of Antarctic crustaceans. Magnesium is known to have a paralysing effect, which is even more distinct in the cold. As only few or no data exist on haemolymph ionic composition of Sub-Antarctic and Antarctic crustaceans, haemolymph samples of 12 species from these regions were analysed for the concentrations of major inorganic ions (Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-) by ion chromatography. Cation relationships guaranteed neuromuscular excitability in all species. Sulphate and potassium correlated positively with magnesium concentration. The Antarctic caridean decapod as well as the amphipods maintained low (6-20% of ambient sea water magnesium concentration), Sub-Antarctic brachyuran and anomuran crabs as well as the Antarctic isopods high (54-96% of ambient sea water magnesium concentration) haemolymph magnesium levels. In conclusion, magnesium regulation may explain the biogeography of decapods, but not that of the peracarids.
Resumo:
Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.
Resumo:
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Resumo:
The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect.
Resumo:
Warming seawater temperatures and ocean acidification on the coastal western Antarctic Peninsula pose unique challenges to stenothermal marine invertebrates. The present study examines prospective sub-lethal effects of elevated temperature, pCO2, and resultant decrease in seawater pH, on righting behavior and maximal escape speeds for two common gastropods, the limpet Nacella concinna (Strebel) and mesogastropod snail Margarella antarctica (Lamy). Replicate individuals held in individual containers were exposed to four combinations of seawater temperature (1.5 °C-current average, 3.5 °C-projected average by 2100) and pH (pH 8.0-current average, pH 7.8-projected average by 2100 as a result of elevated pCO2 levels) for a period of 6 weeks. Following this chronic exposure, righting behavior, determined for the limpets as proportion to right over 24 h and for snails as time to right, as well as maximum escape speed following contact with a sea star predator were measured. We found no significant differences in proportions of limpets displaying the capacity to right among the four temperature-pH treatments. However, there was a significant temperature-pH interaction effect for mean righting times in snails, indicating that the effect of pH on the time to right is dependent on temperature. We found no significant effects of temperature or pH on mean maximal escape speed in limpets. Additionally, we observed a significant temperature-pH interaction effect for mean maximal escape speed in snails. These interactive effects make it difficult to make clear predictions about how these environmental factors may impact behavioral responses.
Resumo:
We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002-2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes. The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.
Resumo:
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.
Resumo:
Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf2 and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region2, 3. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.
Resumo:
The chemical compositions of olivine, plagioclase, pyroxene, and spinel in lavas collected during Ocean Drilling Program Leg 187 in the Australian Antarctic Discordance, Southeast Indian Ridge (41°-46°S, 126°-135°E) were analyzed, and modeling of the theoretical equilibrium petrogenetic conditions between olivine and melt was conducted. The cores of larger olivine phenocrysts, particularly in the isotopic Indian-type mid-ocean-ridge basalt (MORB), are not equilibrated with melt compositions and are considered to be xenocrystic. Larger plagioclase phenocrysts with compositionally reversed zonation are also xenocrystic. The compositions of primary magma were calculated using a "maximum olivine fractionation" model for primitive MORB that should fractionate only olivine. Olivine compositions equilibrated with calculated primary magma and compositions of calculated primary magma suggest that (1) isotopic Pacific-type MORB is more fractionated than Indian-type MORB, (2) Pacific-type MORB was produced by higher degrees of partial melting than Indian-type MORB, and (3) primary magma for Indian-type MORB was segregated from mantle at 10 kbar (~30 km depth), whereas that for Pacific-type MORB was segregated at 15 kbar (~45 km depth).
Resumo:
We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.
Resumo:
Sulphur isotope analyses are an important tool for the study of the natural sulphur cycle. On the northern hemisphere such studies of the atmospheric part of the cycle are practically impossible due to the high emission rate of anthropogenic sulphur. Merely in remote areas of the world such as the Antarctic 34S analyses can be used to identify the various sulphur sources (sea spray, biogenic und volcanic sources). We report here results of 34S measurements on sulphates from recent atmospheric precipitations (snow), lake waters, and salt efflorescences sampled in the Schirmacher Oasis and the Gruber Mountains, central Dronning Maud Land, East Antarctica. By plotting the delta 34S of precipitation versus % sea-spray sulphate the isotopic composition of the excess sulphate (which is probably of marine-biogenic origin) is extrapolated to be +4 per mil. Lake water sulphate and atmospheric precipitations have a comparable sulphur isotope composition (about +5 per mil). The analyzed secondary sulphates from the salt efflorescences, mainly gypsum and a few water-soluble sulphatcs (hexahydrite, epsomite, burkeite. and pickeringite), vary in their isotopic composition between about -12 and +8 per mil. This wide scatter is probably due to chemical weathering of primary sulphides having different delta 34S values in the substratum.