843 resultados para 182-1130
Resumo:
Petrographic observation and carbonate mineralogic and stable isotopic investigation were conducted on lower Oligocene to middle Miocene sediments recovered during Ocean Drilling Program Leg 182 from Site 1132, located at a water depth of 218.5 m immediately seaward of the shelf-slope break of the eastern Eyre Terrace in the western Great Australian Bight. The middle Miocene section consists of bioclastic packstone and grainstone with an interval of partially silicified nannofossil-foraminiferal chalk and is slightly to densely dolomitized. By contrast, the lower Oligocene to lower Miocene section is characterized by a predominance of planktonic and benthic foraminifers, high porosity, absence of chert, and weak dolomitization. The carbon and oxygen isotopic composition of calcites and dolomites between two sections, however, shows no significant difference.
Resumo:
High-resolution records of carbon and oxygen isotopes and benthic foraminiferal accumulation rates for the Eocene-Oligocene section at Ocean Drilling Program Site 689 (Maud Rise, Weddell Sea; paleodepth about 1500 m) were used to infer variations in paleoproductivity in relation to changes in climate and ventilation of the deeper-water column. The benthic foraminiferal abundance and isotope records show short-term fluctuations at periodicities of 100 and 400 ka, implying orbitally driven climatic variations. Both records suggest that intermediate-depth water chemistry and primary productivity changed in response to climate. During the Eocene, productivity increased during cold periods and during cold-to-warm transitions, possibly as a result of increased upwelling of nutrient-rich waters. In the Oligocene, in contrast, productivity maxima occurred during intervals of low delta18O values (presumably warmer periods), when a proto-polar front moved to the south of the location of Site 689. This profound transition in climate-productivity patterns occurred around 37 Ma, coeval with rapid changes toward increasing variability of the oxygen and carbon isotope and benthic abundance records and toward larger-amplitude delta18O fluctuations. Therefore, we infer that, at this time, temperature fluctuations increased and a proto-polar front formed in conjunction with the first distinct pulsations in size of the Antarctic ice sheet. We speculate that this major change might have resulted from an initial opening of the Drake Passage at 37 Ma, at least for surface- and intermediate-water circulation.