66 resultados para zinc oxide films


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composition, structure and occurrence of native aluminium in bottom sediments of the Northeast Pacific at Station DM9-647 are reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical analyses are presented for two Cretaceous clays from Noil Tobee, Timor. Mineralogical examination has shown that they consist principally of quartz, feldspar, illite and chlorite, together with minor amounts of montmorillonite. Both chemically and mineralogically the clays are very similar to the recent argillaceous deep-sea sediments of the Pacific and Indian Oceans, which confirms Molengraaff's theory (1921) that they are of deep-sea origin. Further confirmation of this theory is provided by comparison of the composition of micromanganese nodules, separated from one of these clays, with that of manganese nodules from the Pacific Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diabases were recovered during Legs 137 and 140 at Hole 504B from depths between 1621.5 and 2000.4 meters below seafloor in the lower sheeted dike complex. The samples contain multiple generations of millimetric to centimetric veins. The orientation of the measured veins suggests that two main vein sets exist: one characterized by shallow dipping and the other by random trend. Thermal contraction during rock cooling is considered the main mechanism responsible for fracture formation. Vein infill is related to the circulation of hydrothermal fluids near the spreading axis. Some veins are surrounded by millimeter-sized alteration halos due to fluid percolation from the fractures through the host rock. Vein-filling minerals are essentially amphibole, chlorite, and zeolites. Amphibole composition is controlled by the microstructural site of the rock. Actinolite is the main amphibole occurring in the veins and also in the groundmass away from the halos. In the alteration halos, amphibole shows composition of actinolitic hornblende and Mg-hornblende. Late-stage tension gashes and interstitial spaces in some amphibole-bearing veins are filled with zeolites, suggesting that the veins likely suffered multiple opening stages that record the cooling history of the circulating fluids. Evidence of deformation recorded by the recovered samples seems to be restricted to veins that clearly represent elements of weakness of the rock. On the basis of vein geometry and microstructure we infer structural interpretations for the formation mechanism and for deformation of veins.