125 resultados para underground traps
Resumo:
We compared particle data from a moored video camera system with sediment trap derived fluxes at ~1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40-1200 mg m**-2 d**-1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm**3 l**-1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d**-1, indicating a close and fast coupling between dust input and sedimentation of the material.
Resumo:
We report primary production of organic matter and organic carbon removal from three subtropical open ocean time-series stations, two located in the Atlantic and one in the Pacific, to quantify the biological components of the oceanic carbon pump. We find that within subtropical gyres, export production varies considerably despite similar phytoplankton biomass and productivity. We provide evidence that the removal of organic carbon is linked to differences in nutrient input into the mixed layer, both from eddy induced mixing and dinitrogen fixation. These findings contribute to our knowledge of the spatial heterogeneity of the subtropical oceans, which make up more than 50% of all ocean area and are thought to spread in the course of CO2- induced global warming.