122 resultados para tidal front
Resumo:
We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002-2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes. The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.
Geochemical analysis of surface water samples of a tidal basin of the German Wadden Sea at site SENK
Resumo:
Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.
Resumo:
This data was collected during a cruise to the Kuroshio Extension Front in October 2009. Several chemical and biological parameters were measured: dissolved nutrients, picophytoplankton (by flow cytometry), microphytoplankton (by light microscopy) and phytoplankton pigments (HPLC).