422 resultados para subependymal cyst


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dinoflagellate cysts and other organic-walled microfossils have been studied in recent surface sediments from the entire Norwegian-Greenland Sea. More than 30 taxa have been recognized, of which only few show a distinct distribution pattern, and allow description of four assemblages. The occurrence of most taxa is related to the relatively warmer waters of the Norwegian Sea. Algidaspaeridium? minutum s.1., Brigantedinium simplex and Impagidinium? pallidum are the only species showing a preference for colder water masses. Two species, I.? pallidum and Nematosphaeropsis labyrinthus are mainly restricted to the oceanic environment, whereas the other species have also been reported from neritic environments in previous studies. Due to the limited knowledge of the ecological and sedimentological factors influencing the occurrence of dinoflagellate cysts in oceanic environments, their distribution in recent sediments can be only related to surface water masses in a broad sense. Although the distribution of assemblages correlates with specific surface water masses, comparison with assemblages recovered from sediment traps deployed basinwide in the Norwegian-Greenland Sea (Dale and Dale, 1992) revealed some major discrepancies in species composition and percentage abundances. The differences cannot be explained with certainty at the moment, although there is some evidence that transport of dinoflagellate cysts and other fossilizable microplankton in water masses by currents, in sea-ice and sediments may modify the assemblages found in recent oceanic surface sediments from the Norwegian-Greenland Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinoflagellate cyst record from Ocean Drilling Program Hole 893A, Santa Barbara Basin, southern California, is examined at millennial-scale resolution for the past 40 kyr. Changes in cyst abundance, composition of cyst assemblages, and their diversity reflect major shifts in climate and ocean circulation in the region over this time interval. Throughout the sequence, dinoflagellate cyst assemblages are dominated by heterotrophic dinoflagellates. Brigantedinium spp. and other upwelling-related taxa such as Echinidinium and Protoperidinium americanum are abundant, indicating the continued influence of coastal upwelling on the basin during the late Quaternary. A significant increase in cyst accumulation rates is seen during the Holocene and, to a lesser extent, during shorter warming events such as Bolling/Allerod and Dansgaard-Oeschger interstadials, implying enhanced marine productivity during these periods. Cyst diversity is high during the Holocene. An increase in abundance of cysts produced by autotrophic dinoflagellates in the late Holocene suggests enhanced input of warm, nutrient-rich waters. In contrast, cyst assemblages from the Last Glacial Maximum exhibit a relatively low diversity and an increase in the cysts of heterotrophic dinoflagellates, in particular Selenopemphix nephroides. The presence of this taxon in association with Brigantedinium spp. implies substantial cooling of surface waters in the Santa Barbara Basin at that time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64-55 and 40-32 ka BP, and two major humid phases ~54-45 and 28-20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard-Oeschger (D-O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the role of the ocean within the global carbon cycle, detailed information is required on key-processes within the marine carbon cycle; bio-production in the upper ocean, export of the produced material to the deep ocean and the storage of carbon in oceanic sediments. Quantification of these processes requires the separation of signals of net primary production and the rate of organic matter decay as reflected in fossil sediments. This study examines the large differences in degradation rates of organic-walled dinoflagellate cyst species to separate these degradation and productivity signals. For this, accumulation rates of cyst species known to be resistant (R-cysts) or sensitive (S-cysts) to aerobic degradation of 62 sites are compared to mean annual chlorophyll-a, sea-surface temperature, sea-surface salinity, nitrate and phosphate concentrations of the upper waters and deep-water oxygen concentrations. Furthermore, the degradation of sensitive cysts, as expressed by the degradation constant k and reaction time t, has been related to bottom water [O2]. The studied sediments were taken from the Arabian Sea, north-western African Margin (North Atlantic), western-equatorial Atlantic Ocean/Caraibic, south-western African margin (South Atlantic) and Southern Ocean (Atlantic sector). Significant relationships are observed between (a) accumulation rates of R-cysts and upper water chlorophyll-a concentrations, (b) accumulation rates of S-cysts and bottom water [O2] and (c) degradation rates of S-cysts (kt) and bottom water [O2]. Relationships that are extremely weak or are clearly insignificant on all confidence intervals are between (1) S-cyst accumulation rates and chlorophyll-a concentrations, sea-surface temperature (SST), sea-surface salinity (SSS), phosphate concentrations (P) and nitrate concentrations (N), (2) between R-cyst accumulation rates and bottom water [O2], SST, SSS, P and N, and between (3) kt and water depth. Co-variance is present between the parameters N and P, N, P and chlorophyll-a, oxygen and water depth. Correcting for this co-variance does not influence the significance of the relationship given above. The possible applicability of dinoflagellate cyst degradation to estimate past net primary production and deep ocean ventilation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments from the Vøring Plateau (Norwegian Sea) have been studied for their dinoflagellate cyst (dinocyst) and foraminiferal content in order to reconstruct sea-surface conditions in the eastern Norwegian Sea during Marine Isotope Stage (MIS) 5e. In combination with stable oxygen isotope and ice rafted detritus (IRD) data, the variations in foraminiferal and dinocyst assemblage composition reflect a stepwise transition from the final phase of deglaciation (Termination II) into typical interglacial conditions. This stepwise change is repeated subsequently during the cooling conditions of glacial inception towards MIS 5d. The interval studied is characterized by relatively high abundances of Bitectatodinium tepikiense, in comparison to present-day values in the area, indicating a larger seasonal temperature amplitude with enhanced surface water stratification during MIS 5e. The important occurrence of the warm-temperate dinocyst Spiniferites mirabilis s.l. concurrent with subpolar foraminifers Turborotalita quinqueloba, Globigerina bulloides, and Globigerinita glutinata reveals that most pronounced interglacial marine conditions prevailed in the area just prior to the transition towards MIS 5d. The late stratigraphic position of this phase in the interglacial is verified by comparison with dinocyst data from south of Iceland, manifesting its over-regional implication. Besides the good agreement in dinocyst and foraminiferal assemblage changes, the variations in and between both fossil assemblages also point to the existence of some significant surface water variability in the eastern Norwegian Sea during MIS 5e.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs**1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (ETM2) that took place about 53.5 Myr ago**2, are associated with rapid increases in atmospheric CO2 content. However, the impacts of most events are documented only locally**3,4. Here we show, on the basis of estimates from the TEX86' proxy, that sea surface temperatures rose by 3-5 °C in the Arctic Ocean during the ETM2. Dinoflagellate fossils demonstrate a concomitant freshening and eutrophication of surface waters, which resulted in euxinia in the photic zone. The presence of palm pollen implies**5 that coldest month mean temperatures over the Arctic land masses were no less than 8 °C, in contradiction of model simulations that suggest hyperthermal winter temperatures were below freezing**6. In light of our reconstructed temperature and hydrologic trends, we conclude that the temperature and hydrographic responses to abruptly increased atmospheric CO2 concentrations were similar for the ETM2 and the better-described Palaeocene-Eocene Thermal Maximum**7,8, 55.5 Myr ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to document the palaeoecological affinities of individual extant and extinct dinoflagellate cysts, Late Pliocene and Early Pleistocene dinoflagellate cyst assemblages have been compared with geochemical data from the same samples. Mg/Ca ratios of Globigerina bulloides were measured to estimate the spring-summer sea-surface temperatures from four North Atlantic IODP/DSDP sites. Currently, our Pliocene-Pleistocene database contains 204 dinoflagellate cyst samples calibrated to geochemical data. This palaeo-database is compared with modern North Atlantic and global datasets. The focus lies in the quantitative relationship between Mg/Ca-based (i.e. spring-summer) sea-surface temperature (SSTMg/Ca) and dinoflagellate cyst distributions. In general, extant species are shown to have comparable spring-summer SST ranges in the past and today, demonstrating that our new approach is valid for inferring spring-summer SST ranges for extinct species. For example, Habibacysta tectata represents SSTMg/Ca values between 10° and 15°C when it exceeds 30% of the assemblage, and Invertocysta lacrymosa exceeds 15% when SSTMg/Ca values are between 18.6° and 23.5°C. However, comparing Pliocene and Pleistocene SSTMg/Ca values with present day summer values for the extant Impagidinium pallidum suggests a greater tolerance of higher temperatures in the past. This species occupies more than 5% of the assemblage at SSTMg/Ca values of 11.6-17.9°C in the Pliocene and Pleistocene, whereas present day summer SSTs are around -1.7 to 6.9°C. This observation questions the value of Impagidinium pallidum as reliable indicator of cold waters in older deposits, and may explain its bipolar distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acritarchs have received limited attention in palynological studies of the Cenozoic, although they have much potential both for refining Neogene and Quaternary stratigraphy, especially in mid- and high northern latitudes, and developing palaeoceanographical reconstructions. Here we formally describe and document the stratigraphical and palaeotemperature ranges (from foraminiferal Mg/Ca) of four new acritarch species: Cymatiosphaera? aegirii sp. nov., Cymatiosphaera? fensomei sp. nov., Cymatiosphaera? icenorum sp. nov. and Lavradosphaera canalis sp. nov. In reviewing the stratigraphical distributions of all species of the genus Lavradosphaera De Schepper & Head, 2008, we demonstrate their correlation potential between the North Atlantic and Bering Sea in the Pliocene. Additionally, Lavradosphaera lucifer De Schepper & Head, 2008 and Lavradosphaera canalis sp. nov., while not themselves overlapping stratigraphically, have morphological intermediates that do partially overlap and may represent an evolutionary trend consequent upon climate cooling in the Late Pliocene. Finally, we show that the highest abundances of the acritarchs presented here were living in the eastern North Atlantic, in surface-water temperatures not very different from today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transect from the bathyal to proximal shelf facies of the Boreal Realm was investigated to compare spatial and temporal distribution changes of calcareous dinoflagellate cysts (c-dinocysts) throughout the mid-Cenomanian in order to gain information on the ecology of these organisms. Pithonelloideae dominated the cyst assemblages to more than 95% on the shelf, a prevalence that can be observed throughout most of the Upper Cretaceous. The affinity of this group with the dinoflagellates, which is still controversially discussed, can be confirmed, based on evidence from morphological features and distribution patterns. The consistent prevalence of Pithonella sphaerica and P. ovalis in c-dinocyst assemblages throughout the Upper Cretaceous indicates that they were produced more frequently than cysts of the other species and might, therefore, represent a vegetative dinoflagellate life stage. P. sphaerica and P. ovalis are interpreted as eutrophic species. P. sphaerica is the main species in a marginal-shelf upwelling area, offshore Fennoscandia. Here, sedimentary cyclicity appears to have been reduced to the strongest light/dark changes, while in the outer shelf sediments, light/dark cycles are well-developed and show pronounced temporal assemblage changes. Cyclic fluctuations in the P. sphaerica / P. ovalis ratio reflect shifts of the preferred facies zones and indicate changes in surface mixing patterns. During periods of enhanced surface mixing most parts of the shelf were well-ventilated, and nutrient-enriched surface waters led to high productivity and dominance of the Pithonelloideae. These conditions on the shelf contrasted with those in the open ocean, where more oligotrophic and probably stratified waters prevailed, and an assemblage with very few Pithonelloideae and dominance of Cubodinellum renei and Orthopithonella ? gustafsonii was characteristic. While orbitally-forced light/dark sedimentary cyclicity of the shelf sections was mainly related to surface-water carbonate productivity changes, no cyclic modulation of productivity was observed in the oceanic profile. Therefore, dark layer formation in the open ocean was predominantly controlled by the cyclic establishment of anoxic bottom water conditions. Orbitally-forced interruptions in mixing on the shelf resulted in cyclic periods of stratification and oligotrophy in the surface waters, an expansion of oceanic species to the outer shelf, and a shelfward shift of pithonelloid-facies zones, which were probably related to shelfward directed oceanic ingressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site 765 contains a sequence of tropical, middle Miocene to Holocene dinoflagellate cysts. These diverse assemblages are characterized by abundant Polysphaeridium zoharyi and Spiniferites bulloideus. Abundances of Impagidinium spp. and Nematosphaeridium spp. reflect the shelf-to-slope origin of the assemblages. One new genus, Blysmatodinium, and two new species, Nematosphaeridium (?) wrennii sp. nov. and Blysmatodinium argoi, are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.