699 resultados para slit pore


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of the Sr2+ concentrations of interstitial fluids obtained from sediments squeezed during Leg 115 were used to estimate the rates and total amount of recrystallization of biogenic carbonates. The total amount of recrystallization calculated using this method varies from less than 1 % in sediments at Site 706 to more than 40% at Site 709 in sediments of 47 Ma. Five of the sites drilled during Leg 115 (Sites 707 through 711) were drilled in a depth transect within a restricted geographic area so that theoretically they received similar amounts of sediment input. Of these, the maximum rate of recrystallization occurred in the upper 50 m of Site 710 (3812 m). The amount of recrystallization decreased with increasing water depth at Sites 708 (4096 m) and 711 (4428 m), presumably as a result of the fact that most of the reactive calcium carbonate was dissolved before burial. We also observed significant alkalinity deficits at many of these sites, a condition which most likely resulted from the precipitation of calcium carbonate either in the sedimentary column, or during retrieval of the core. Precipitation of CaCO3 as a result of pressure changes during core retrieval was confirmed by the comparison of Ca2+ and alkalinity from water samples obtained using the in-situ sampler and squeezed from the sediments. At Sites 707 and 716, the shallowest sites, no calcium or alkalinity deficits were present. In spite of our estimations of as much as 45% recrystallization at Site 709, all the carbonate sites exhibited what would be previously considered conservative Ca2+/Mg2+ profiles, which varied from -1 to -0.5. By virtue of the position of these sites relative to known basaltic basement or through the actual penetration of basalt (i.e., Sites 706, 707 and 712), these sites are all known to be underlain by basalt. Our results suggest, therefore, that more positive Ca2 + /Mg2+ gradients cannot necessarily be used as indicators of the nature of basement material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the South Chamorro Seamount in the Mariana subduction zone, geochemical data of pore fluids recovered from Ocean Drilling Program Leg 195 Site 1200 indicate that these fluids evolved from dehydration of the underthrusting Pacific plate and upwelling of fluids to the surface through serpentinite mud volcanoes as cold springs at their summits. Physical conditions of the fluid source at 27 km were inferred to be at 100°-250°C and 0.8 GPa. The upwelling of fluid is more active near the spring in Holes 1200E and 1200A and becomes less so with increasing distance toward Hole 1200D. These pore fluids are depleted in Cl and Br, enriched in F (except in Hole 1200D) and B (up to 3500 µM), have low 11B (16-21), and have lower than seawater Br/Cl ratios. The mixing ratios between seawater and pore fluids is calculated to be ~2:1 at shallow depth. The F, Cl, and Br concentrations, together with B concentrations and B isotope ratios in the serpentinized igneous rocks and serpentine muds that include ultramafic clasts from Holes 1200A, 1200B, 1200D, 1200E, and 1200F, support the conclusion that the fluids involved in serpentinization originated from great depths; the dehydration of sediments and altered basalt at the top of the subducting Pacific plate released Cl, H2O, and B with enriched 10B. Calculation from B concentrations and upwelling rates indicate that B is efficiently recycled through this nonaccretionary subduction zone, as through others, and may contribute the critical missing B of the oceanic cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments at the bottom of Lake Baikal are mostly oxidized at their surface, and the oxidized sedimentary deposits are enriched in Fe and Mn hydroxides. The thickness of the oxidized zone of the pelagic sediments averages at 5 cm and locally reaches 10-15, occasionally exceeding 20 cm. Both the thickness of the oxidized layer and the degree of its enrichment in iron and manganese hydroxides are controlled by the depth to which oxygen can penetrate into the sedimentary deposits, which is, in turn, closely related to the sedimentation conditions in the lake (which broadly vary). The sedimentation rate far off the shores of Lake Baikal ranges from <0.02 mm/year to 1.5 mm/year, and the content of organic matter buried in the sediments varies from 0.1 to >4%. The variability of the sedimentation process makes Lake Baikal very convenient to study its diagenetic processes related to redox reactions in sediments, first of all, processes responsible for the redistribution of Fe and Mn compounds. Although the diagenetic enrichment of Fe and Ni in bottom sediments is known to be of biogenic character, very scarce information is available so far on the microorganisms involved in the redistribution of these elements in sediments in Lake Baikal, which lately led us to explore this issue in detail. Our research was centered on the role played by the microbial community in the diagenetic transformations of Fe and Mn with reference to sedimentation conditions in Lake Baikal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report iodine and bromine concentrations in a total of 256 pore water samples collected from all nine sites of Ocean Drilling Program Leg 204, Hydrate Ridge. In a subset of these samples, we also determined iodine ages in the fluids using the cosmogenic isotope 129I (T1/2 = 15.7 Ma). The presence of this cosmogenic isotope, combined with the strong association of iodine with methane, allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly with depth from values close to that of seawater (0.0004 mM) to concentrations >0.5 mM. Several of the cores taken from the northwest flank of the southern summit show a pronounced maximum in iodine concentrations at depths between 100 and 150 meters below seafloor in the layer just above the bottom-simulating reflector. This maximum is especially visible at Site 1245, where concentrations reach values as high as 2.3 mM, but maxima are absent in the cores taken from the slope basin sites (Sites 1251 and 1252). Bromine concentrations follow similar trends, but enrichment factors for Br are only 4-8 times that of seawater (i.e., considerably lower than those for iodine). Iodine concentrations are sufficient to allow isotope determinations by accelerator mass spectrometry in individual pore water samples collected onboard (~5 mL). We report 129I/I ratios in a few samples from each core and a more complete profile for one flank site (Site 1245). All 129I/I ratios are below the marine input ratio (Ri = 1500x10**-15). The lowest values found at most sites are between 150 and 250x10**-15, which correspond to minimum ages between 40 and 55 Ma, respectively. These ages rule out derivation of most of the iodine (and, by association, of methane) from the sediments hosting the gas hydrates or from currently subducting sediments. The iodine maximum at Site 1245 is accompanied by an increase in 129I/I ratios, suggesting the presence of an additional source with an age younger than 10 Ma; there is indication that younger sources also contribute at other sites, but data coverage is not yet sufficient to allow a definitive identification of sources there. Likely sources for the older component are formations of early Eocene age close to the backstop in the overriding wedge, whereas the younger sources might be found in recent sediments underlying the current locations of the gas hydrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overpressures measured with pore pressure penetrometers during Integrated Ocean Drilling Program (IODP) Expedition 308 reach 70% and 60% of the hydrostatic effective stress (View the MathML source) in the first 200 meters below sea floor (mbsf) at Sites U1322 and U1324, respectively, in the deepwater Gulf of Mexico, offshore Louisiana. High overpressures are present within low permeability mudstones where there have been multiple, very large, submarine landslides during the Pleistocene. Beneath 200 mbsf at Site U1324, pore pressures drop significantly: there are no submarine landslides in this mixture of mudstone, siltstone, and sandstone. The penetrometer measurements did not reach the in situ pressure at the end of the deployment. We used a soil model to determine that an extrapolation approach based on the inverse of square route of time (View the MathML source) requires much less decay time to achieve a desirable accuracy than an inverse time (1/t) extrapolation. Expedition 308 examined how rapid and asymmetric sedimentation above a permeable aquifer drives lateral fluid flow, extreme pore pressures, and submarine landslides. We interpret that the high overpressures observed are driven by rapid sedimentation of low permeability material from the ancestral Mississippi River. Reduced overpressure at depth at Site U1324 suggests lateral flow (drainage) whereas high overpressure at Site U1322 requires inflow from below: lateral flow in the underlying permeable aquifer provides one mechanism for these observations. High overpressure near the seafloor reduces slope stability and provides a mechanism for the large submarine landslides and low regional gradient (2°) offshore from the Mississippi delta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotopic composition of zeolite pore-fill cements in andesitic volcaniclastic sandstones recovered from DSDP Site 445 ranges from +30.1 to +17.8? (SMOW) downhole. This change is controlled by large heat flow from the basement which caused early diagenetic emplacement of zeolites during early basin rifting. d18O-values of late calcite cements range from +25.1 to +27.4? (SMOW); their petrographic relation and inferred temperature of formation suggest that calcite cements were formed during late stages of diagenesis. Isotopic composition in these sandstones is in agreement with mineral paragenesis determined microscopically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Li concentrations, up to a maximum of 1155 µM are observed in the pore fluids of the Peru convergent margin slope sediments. At Ocean Drilling Program Sites 683 and 685 (ca. 9°S), the Li concentration depth gradients are twice as steep as at Site 682 and 688 (ca. 11°S). Within the sediments, the most important Li sources are from aluminosilicate minerals. Biogenic opal-A contains little Li and thus dilutes the Li concentration of the bulk sediments. The sediment compositions and the thermal regimes are similar at 9° and 11°S, suggesting there is an additional, non-sedimentary source for the observed high Li concentrations in the northern pore fluids. At 9°S, the 87Sr/86Sr ratios reach a maximum value of 0.709958. The observed radiogenic 87Sr/86Sr values in the pore fluids support the suggestion that the additional Li may derive from exchange reactions with underlying continental crust. The high concentrations of Li at 11°S may derive from basalt alteration at moderate to high temperatures, as suggested by the non-radiogenic 87Sr/86Sr ratios in these pore fluids, which reach a minimum value of 0.707218. Based on (1) Li concentrations in the pore fluids in slope sediments from Peru and several other margins, and (2) an approximate estimate of fluid flux from continental margins into the ocean, continental margins provide an estimated 1 to 3 * 10**10 moles Li/yr to the ocean. This source of oceanic Li, which has not been considered previously, is of the same order of magnitude as some estimates of hydrothermal and river Li fluxes and may have important consequences for the oceanic Li isotope budget. The sink is unknown for this newly discovered and possibly large Li source, but it may be more pervasive low-temperature alteration of oceanic basement than previously estimated, or burial of mineral phases, such as authigenic clay minerals, or metal oxyhydroxides which may be Li-rich.