104 resultados para radiation absorption analysis
Resumo:
The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr-1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m-2 yr-1.
Resumo:
Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way that affects the multiple physiological responses of C. officinalis differently. In particular, changes in the skeletal content induced by low pH may affect how C. officinalis absorbs and uses light. Therefore, the light quality used in ocean acidification experiments will affect the predictions of how calcified macroalgae will respond to elevated CO2.