64 resultados para path length
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.
Resumo:
Orientation based on visual cues can be extremely difficult in crowded bird colonies due to the presence of many individuals. We studied king penguins (Aptenodytes patagonicus) that live in dense colonies and are constantly faced with such problems. Our aims were to describe adult penguin homing paths on land and to test whether visual cues are important for their orientation in the colony. We also tested the hypothesis that older penguins should be better able to cope with limited visual cues due to their greater experience. We collected and examined GPS paths of homing penguins. In addition, we analyzed 8 months of penguin arrivals to and departures from the colony using data from an automatic identification system. We found that birds rearing chicks did not minimize their traveling time on land and did not proceed to their young (located in creches) along straight paths. Moreover, breeding birds' arrivals and departures were affected by the time of day and luminosity levels. Our data suggest that king penguins prefer to move in and out of the colony when visual cues are available. Still, they are capable of navigating even in complete darkness, and this ability seems to develop over the years, with older breeding birds more likely to move through the colony at nighttime luminosity levels. This study is the first step in unveiling the mysteries of king penguin orientation on land.