227 resultados para noncoding,conservation, neutral evolution, constraints


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detecting speciation in the fossil record is a particularly challenging matter. Palaeontologists are usually confronted with poor preservation and limited knowledge on the palaeoenvironment. Even in the contrary case of adequate preservation and information, the linkage of pattern to process is often obscured by insufficient temporal resolution. Consequently, reliable documentations of speciation in fossils with discussions on underlying mechanisms are rare. Here we present a well-resolved pattern of morphological evolution in a fossil species lineage of the gastropod Melanopsis in the long-lived Lake Pannon. These developments are related to environmental changes, documented by isotope and stratigraphical data. After a long period of stasis, the ancestral species experiences a phenotypic change expressed as shift and expansion of the morphospace. The appearance of several new phenotypes along with changes in the environment is interpreted as adaptive radiation. Lake-level high stands affect distribution and availability of habitats and, as a result of varied functional demands on shell geometry, the distribution of phenotypes. The on-going divergence of the morphospace into two branches argues for increasing reproductive isolation, consistent with the model of ecological speciation. In the latest phase, however, progressively unstable conditions restrict availability of niches, allowing survival of one branch only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper documents the evolutionary history of Cycladophora davisiana Ehrenberg from an uppermost Miocene to Pleistocene sedimentary record in the high-latitude Northwest Pacific. It apparently evolved from C. sakaii Motoyama through a series of intermediates. C. sakaii has a relatively large shell with an external spongy layer. The evolutionary transition is characterized by a relatively rapid decrease in thorax size with a reduction of the spongy appendage. This change occurred during about 0.4 m.y. from 2.8 to 2.4 Ma without cladogenesis. Following this interval, a decrease in thorax size continued gradually up to the Recent, resulting in a very small morphology. Although the population of C. davisiana first appeared at about 2.5 Ma, some morphotypic specimens may occur in earlier periods as indistinguishable very small endmembers in the C. sakaii populations. Timing of the first appearance events both of morphotypic specimens and of a population of C. davisiana in Site 192 and previously reported cores does not disprove the idea that C. davisiana evolved first in the Northwest Pacific region, and later migrated into other regions of the world ocean. Biometrics clearly indicate no direct phylogenetic relationships between C. davisiana and C. cornutoides Kling in the studied core. Thus, the latter species, which was originally described as a variation and later elevated to a subspecies of the former species, is separated from the former species and raised to the species rank.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely recognized that climate change poses significant challenges to the conservation of biodiversity. The need of dealing with relatively rapid and uncertain environmental change calls for the enhancement of adaptive capacity of both biodiversity and conservation management systems. Under the hypothesis that most of the conventional biodiversity conservation tools do not sufficiently stimulate a dynamic protected area management, which takes rapid environmental change into account, we evaluated almost 900 of The Nature Conservancy's site-based conservation action plans. These were elaborated before a so-called climate clinic in 2009, an intensive revision of existing plans and a climate change training of the planning teams. We also compare these results with plans elaborated after the climate clinic. Before 2009, 20% of the CAPs employed the term "climate change" in their description of the site viability, and 45% identified key ecological attributes that are related to climate. 8% of the conservation strategies were directly or indirectly related to climate change adaptation. After 2009, a significantly higher percentage of plans took climate change into account. Our data show that many planning teams face difficulties in integrating climate change in their management and planning. However, technical guidance and concrete training can facilitate management teams learning processes. Arising new tools of adaptive conservation management that explicitly incorporate options for handling future scenarios, vulnerability analyses and risk management into the management process have the potential of further making protected area management more proactive and robust against change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the ventilation of the Southern Ocean are thought to play an important role on deglacial carbon and radiocarbon evolution, but have not been tested within a coupled climate-carbon model. Here, we present such a simulation based on a simple scenario of transient deglacial sinking of brines - sea-ice salt rejections - around Antarctica, which modulates Southern Ocean ventilation. This experiment is able to reproduce deglacial atmospheric changes in carbon and radiocarbon but also ocean radiocarbon records measured in the Atlantic, Southern and Pacific Oceans. Simulated for the first time in a fully coupled climate-carbon model including radiocarbon, our modeling results suggest that the deglacial changes in atmospheric carbon dioxide and radiocarbon were achieved by means of a breakdown in the glacial brine-induced stratification of the Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tissue-specific composition of sum classes of brominated and chlorinated contaminants and metabolic/degradation byproducts was determined in adult male and female polar bears from East Greenland. Significantly (p < 0.05) higher concentrations of SUM-PCBs, various other organochlorines such as SUM-CHL, p,p'-DDE, SUM-CBz, SUM-HCHs, octachlorostyrene (OCS),SUM-mirex, dieldrin, the flame retardants SUM-PBDEs, and total-(R)-hexabromocyclododecane (HBCD), SUM-methylsulfonyl (MeSO2)-PCBs and 3-MeSO2-p,p'-DDE, were found in the adipose and liver tissues relative to whole blood and brain. In contrast, SUM-hydroxyl (OH)-PCB, 4-OH-heptachlorostyrene and SUM-OH-PBDE concentrations were significantly highest (p < 0.05) in whole blood, whereas the highest concentrations of SUM-OH-PBBs were found in the adipose tissue. Based on the total concentrations of all organohalogens in all three tissues and blood, the combined body burden was estimated to be 1.34 ± 0.12 g, where >91% of this amount was accounted for by the adipose tissue alone, followed by the liver, whole blood, and brain. These results show that factors such as protein association and lipid solubility appear to be differentially influencing the toxicokinetics, in terms of tissue composition/localization and burden, of organohalogen classes with respect to chemical structure and properties such as the type of halogenation (e.g., chlorination or bromination), and the presence or absence of additional phenyl group substituents (e.g., MeO and OH groups). The tissue- and blood-specific accumulation (or retention) among organohalogen classes indicates that exposure and any potential contaminant-mediated effects in these polar bears are likely tissue or blood specific.