202 resultados para net photosynthesis rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net ecosystem calcification rates (NEC) and net photosynthesis (NP) were determined from CO2 seawater parameters on the barrier coral reef of Kaneohe Bay, Oahu, Hawaii. Autosamplers were deployed to collect samples on the barrier reef every 2 hours for six 48-hour deployments, two each in June 2008, August 2009, and January/February 2010. NEC on the Kaneohe Bay barrier reef increased throughout the day and decreased at night. Net calcification continued at low rates at night except for six time periods when net dissolution was measured. The barrier reef was generally net photosynthetic (positive NP) during the day and net respiring (negative NP) at night. NP controlled the diel cycles of the partial pressure of CO2 (pCO2) and aragonite saturation state resulting in high daytime aragonite saturation state levels when calcification rates were at their peak. However, the NEC and NP diel cycles can become decoupled for short periods of time (several hours) without affecting calcification rates. On a net daily basis, net ecosystem production (NEP) of the barrier reef was found to be sometimes net photosynthetic and sometimes net respiring and ranged from -378 to 80 mmol m-2 d-1 when calculated using simple box models. Daily NEC of the barrier reef was positive (net calcification) for all deployments and ranged from 174 to 331 mmol CaCO3 m-2 d-1. Daily NEC was strongly negatively correlated with average daily pCO2 (R2 = 0.76) which ranged from 431 to 622 µatm. Daily NEC of the Kaneohe Bay barrier reef is similar to or higher than daily NEC measured on other coral reefs even though aragonite saturation state levels (mean aragonite saturation state = 2.85) are some of the lowest measured in coral reef ecosystems. It appears that while calcification rate and ?arag are correlated within a single coral reef ecosystem, this relationship does not necessarily hold between different coral reef systems. It can be expected that ocean acidification will not affect coral reefs uniformly and that some may be more sensitive to increasing pCO2 levels than others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.