300 resultados para isotopic change rate
Resumo:
The Turonian (93.5 to 89.3 million years ago) was one of the warmest periods of the Phanerozoic eon, with tropical sea surface temperatures over 35°C. High-amplitude sea-level changes and positive d18O excursions in marine limestones suggest that glaciation events may have punctuated this episode of extreme warmth. New d18O data from the tropical Atlantic show synchronous shifts ~91.2 million years ago for both the surface and deep ocean that are consistent with an approximately 200,000-year period of glaciation, with ice sheets of about half the size of the modern Antarctic ice cap. Even the prevailing supergreenhouse climate was not a barrier to the formation of large ice sheets, calling into question the common assumption that the poles were always ice-free during past periods of intense global warming.
Resumo:
We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.
Resumo:
Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg 183 to the Kerguelen Plateau (KP) provide the most complete Paleocene and Eocene sections yet recovered from the southern Indian Ocean. These nannofossil-foraminifer oozes and chalks provide an opportunity to study southern high-latitude biostratigraphic and paleoceanographic events, which is the primary subject of this paper. In addition, a stable isotope profile was established across the Cretaceous/Tertiary (K/T) boundary at Site 1138. An apparently complete K/T boundary was recovered at Site 1138 in terms of assemblage succession, isotopic signature, and reworking of older (Cretaceous) nannofossil taxa. There is a significant color change, a negative carbon isotope shift, and nannofossil turnover. The placement of the boundary based on these criteria, however, is not in agreement with the available shipboard paleomagnetic stratigraphy. We await shore-based paleomagnetic study to confirm or deny those preliminary results. The Paleocene nannofossil assemblage is, in general, characteristic of the high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Placed in context with other Southern Ocean sites, the biogeography of Hornibrookina indicates the presence of some type of water mass boundary over the KP during the earliest Paleocene. This boundary disappeared by the late Paleocene, however, when there was an influx of warm-water discoasters, sphenoliths, and fasciculiths. This not only indicates that during much of the late Paleocene water temperatures were relatively equable, but preliminary floral and stable isotope analyses also indicate that a relatively complete record of the late Paleocene Thermal Maximum event was recovered at Site 1135. It was only at the beginning of the middle Eocene that water temperatures began to decline and the nannofossil assemblage became dominated by cool-water species while discoaster and sphenolith abundances and diversity were dramatically reduced. One new taxonomic combination is proposed, Heliolithus robustus Arney, Ladner, and Wise.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
Measurements of 87Sr/86Sr on samples of planktonic foraminifers were used to reconstruct changes in the Sr isotopic composition of seawater for the past 8 Ma. The late Neogene was marked by a general, but not regular, increase in 87S/86Sr with two breaks in slope at 5.5 and 2.5 Ma. These times mark the beginning of two periods of steep increase in 87Sr/86Sr values, relative to preceding periods characterized by essentially constant values. During the last 2.5 Ma, 87Sr/86Sr values increased at an average rate of 0.000054/Ma. This steep increase suggests that the modem ocean is not in Sr isotopic equilibrium relative to its major input fluxes. A non-equilibrium model for the modern Sr budget suggests that the residence time of Sr is ~2.5 Ma, which is significantly less than previously accepted estimates of 4-5 Ma. Modelling results suggest that the increase in 87Sr/86Sr over the past 8 Ma could have resulted from a 25% increase in the riverine flux of Sr or an increase in the average 87Sr/86Sr of this flux by 0.0006. The dominant cause of increasing 87Sr/86Sr values of seawater during the late Neogene is believed to be increased rates of uplift and chemical weathering of mountainous regions. Calculations suggest that uplift and weathering of the Himalayan-Tibetan region alone can account for the majority of the observed 87Sr/86Sr increase since the early Late Miocene. Exhumation of Precambrian shield areas by continental ice-sheets may have contributed secondarily to accelerated mechanical and chemical weathering of old crustal silicates with high 87Sr/86Sr values. In fact, the upturn in 87Sr/86Sr at 2.5 Ma coincides with increased glacial activity in the Northern Hemisphere. A variety of geochemical (87Sr/86Sr, Ge/Si, d13C, CCD, etc.) and sedimentologic data (accumulation rates) from the marine sedimentary record are compatible with a progressive increase in the chemical weathering rate of continents and dissolved riverine fluxes during the late Cenozoic. We hypothesize that chemical weathering of the continents and dissolved riverine fluxes to the oceans reached a maximum during the late Pleistocene because of repeated glaciations, increased continental exposure by lowered sea level, and increased continental relief resulting from high rates of tectonism.
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
The CaCO3 content in Quaternary deep-sea sediments from Pacific and Atlantic oceans have been suggested to respond differently to glacial/interglacial cycles; CaCO3 contents are highest during glacials in the Pacific but highest during interglacials in the Atlantic Ocean. It is not yet clear as to whether a Pacific or an Atlantic pattern of CaCO3 fluctuations dominates the Indian Ocean. We have analyzed the Ocean Drilling Program (ODP) Site 709A from the western equatorial Indian Ocean for the last 1370 ka to determine the relationships between percentages and fluxes of CaCO3 and Quaternary paleoclimatic changes. We also analyzed the coarse (>25 µm) and fine (<25 µm) fractions of CaCO3 in an attempt at estimating the influence of differences in productivity of foraminifera and calcareous nannofossils in shaping the CaCO3 record. Carbon isotopes and Ba/Al ratios were used as indices of productivity. Percentages and fluxes of CaCO3 in the total sediment and <25 µm fraction do not show any clear relationships to glacial/interglacial cycles derived from d18O of the planktonic foraminifera Globigerinoides ruber. This indicates that CaCO3 fluctuations at this site do not show either a Pacific or an Atlantic pattern of CaCO3 fluctuations. Fluxes of CaCO3 (0.38 to 2.46 g/cm**2/ ka) in total sediment and Ba/Al ratios (0.58 to 3.93 g/cm**2/ka) show six-fold variability through the last 1370 ka, which points out that productivity changes are significant at this site. Fluxes of the fine CaCO3 component demonstrate a 26-fold change (0.02 to 0.52 g/cm**2/ka), whereas the coarse CaCO3 component exhibit eight-fold change (0.13 to 1.07 g/cm**2/ka). This suggests that productivity variations of calcareous nannofossils are greater in comparison with the foraminifera. On the other hand, mean values of coarse CaCO3 fluxes are higher compared to those of fine CaCO3, which reveals that the foraminifera contribute more to the bulk CaCO3 flux than the calcareous nannofossils in the equatorial Indian Ocean.
Resumo:
A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.
Resumo:
Early Triassic oceans were characterized by deposition of a number of "anachronistic facies", including microbialites, seafloor carbonate cement fans, and giant ooids. Giant ooids were particularly prevalent in Lower Triassic sections across South China and exhibit unusual features that may provide insights into marine environmental conditions following the end-Permian mass extinction. The section at Moyang (Guizhou Province) contains abundant giant ooids ranging in size between 2 and 6 mm (maximum 12 mm) and exhibiting various cortical structures, including regular, deformed, compound, regenerated and "domed". Preservation of ooid cortical structure is generally good as indicated by petrographic observations, and trace element and carbon isotope analyses suggest that diagenesis occurred in a closed diagenetic system. All ooids exhibit fine concentric laminae, frequently alternating between light-colored coarsely crystalline and dark-colored finely crystalline layers probably reflecting variation in organic content or original mineralogy. Under scanning electron microscope, biomineralized filaments or biofilms and tiny carbonate fluorapatite (CFA) crystals are commonly found in the finely crystalline layers. We infer that the precipitation of CFA was related to adsorption of P via microbial activity on the surfaces of ooids following episodic incursions of deep waters rich in carbon dioxide, hydrogen sulfide and phosphate into shallow-marine environments. Giant ooid precipitation may have been promoted in shallow ramp settings during these events by increased watermass agitation and supersaturation with respect to calcium carbonate, as well as reduced carbonate removal rates through biotic skeletal formation. Spatio-temporal distribution data reveal that giant ooids were widespread in the Tethyan region during the Early Triassic, and that they were most abundant immediately after the end-Permian crisis and disappeared gradually as metazoans repopulated marine environments.
Resumo:
The upper 38 m of Hole 722B sediments (Owen Ridge, northwest Arabian Sea) was sampled at 20 cm intervals and used to develop records of lithogenic percent, mass accumulation rate, and grain size spanning the past 1 m.y. Over this interval, the lithogenic component of Owen Ridge sediments can be used to infer variability in the strength of Arabian Sea summer monsoon winds (median grain size) and the aridity of surrounding dust source-areas (mass accumulation rate; MAR in g/cm**2/k.y). The lithogenic MAR has strong 100, 41, and 23 k.y. cyclicities and is forced primarily by changes in source-area aridity associated with glacial-interglacial cycles. The lithogenic grain size, on the other hand, exhibits higher frequency variability (23 k.y.) and is forced by the strength of summer monsoon winds which, in turn, are forced by the effective sensible heating of the Indian-Asian landmass and by the availability of latent heat from the Southern Hemisphere Indian Ocean. These forcing mechanisms combine to produce a wind-strength record which has no strong relationship to glacial-interglacial cycles. Discussion of the mechanisms responsible for production of primary Milankovitch cyclicities in lithogenic records from the Owen Ridge is presented elsewhere (Clemens and Prell, 1990, doi:10.1029/PA005i002p00109). Here we examine the 1 m.y. record from Hole 722B focusing on different aspects of the lithogenic components including an abrupt change in the monsoon wind-strength record at 500 k.y., core-to-core reproducibility, comparison with magnetic susceptibility, coherency with a wind-strength record from the Pacific Ocean, and combination frequencies in the wind-strength record. The Hole 722B lithogenic grain-size record shows an abrupt change at 500 k.y. possibly indicating decreased monsoon wind-strength over the interval from 500 k.y. to present. The grain-size decrease appears to be coincident with a loss of spectral power near the 41 k.y. periodicity. However, the grain-size decrease is not paralleled in the Globigerina bulloides upwelling record, an independent record of summer monsoon wind-strength (Prell, this volume). These observations leave us with competing hypotheses possibly involving: (1) a decrease in the sensitivity of monsoon windstrength to obliquity forcing, (2) decoupling of the grain size and G. bulloides records via a decoupling of the nutrient supply from wind-driven upwelling, and/or (3) a change in dust source-area or the patterns of dust transporting winds. Comparison of the lithogenic grain size and weight percent records from Hole 722B with those from a nearby core shows that the major and most minor events are well replicated. These close matches establish our confidence in the lithogenic extraction techniques and measurements. Further, reproducibility on a core-to-core scale indicates that the eolian depositional signal is regionally strong, coherent, and well preserved. The lithogenic weight percent and magnetic susceptibility are extremely well correlated in both the time and frequency domains. From this we infer that the magnetically susceptible component of Owen Ridge sediments is of terrestrial origin and transported to the Owen Ridge via summer monsoon winds. Because of the high correlation with the lithogenic percent record, the magnetic susceptibility record can be cast in terms of lithogenic MAR and used as a high resolution proxy for continental aridity. In addition to primary Milankovitch periodicities, the Hole 722B grain-size record exhibits periodicity at 52 k.y. and at 29 k.y. Both periodicities are also found in the grain-size record from piston core RC11-210 in the equatorial Pacific Ocean. Comparison of the two grain-size records shows significant coherence and zero phase relationships over both the 52 and 29 k.y. periodicities suggesting that the strengths of the Indian Ocean monsoon and the Pacific southeasterly trade winds share common forcing mechanisms. Two possible origins for the 52 and 29 k.y. periodicities in the Hole 722B wind-strength record are (1) direct Milankovitch forcing (54 and 29 k.y. components of obliquity) and (2) combination periodicities resulting from nonlinear interactions within the climate system. We find that the 52 and 29 k.y. periodicities show stronger coherency with crossproducts of eccentricity and obliquity (29 k.y.) and precession and obliquity (52 k.y.) than with direct obliquity forcing. Our working hypothesis attributes these periodicities to nonlinear interaction between external insolation forcing and internal climatic feedback mechanisms involving an interdependence of continental snow/ice-mass (albedo) and the hydrological cycle (latent heat availability).
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral delta18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly delta18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater delta18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater delta18O and salinity were observed. The two parameters were related to each other by the equation delta18O Seawater (per mil, VSMOW) = 0.281 * Salinity - 9.14. The high-resolution coral delta18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater delta18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral delta18O calibrations against the in situ measurements show that temperature (T) is related to coral delta18O (delta c) and seawater delta18O (delta w) by the equation T (°C) = -5.38 (delta c - delta w) -1.08. Our results demonstrate that coral delta18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater delta18O to this proxy, which could be ignored.
Resumo:
Carbonate mineral precipitation in the upper oceanic crust during low-temperature, off-axis, hydrothermal circulation is investigated using new estimates of the bulk CO2 content of seven DSDP/ODP drill cores. In combination with previously published data these new data show: (i) the CO2 content of the upper ~ 300 m of the crust is substantially higher in Cretaceous than in Cenozoic crust and (ii) for any age of crust, there is substantially more CO2 in Atlantic (slow-spreading) than Pacific (intermediate- to fast-spreading) crust. Modelling the Sr-isotopic composition of the carbonates suggests that > 80% of carbonate mineral formation occurs within < 20 Myr of crust formation. This means that the higher CO2 content of Cretaceous crust reflects a secular change in the rate of CO2 uptake by the crust. Oxygen isotope derived estimates of carbonate mineral precipitation temperatures show that the average and minimum temperature of carbonate precipitation was ~10 °C higher temperatures in the Cretaceous than in the Cenozoic. This difference is consistent with previous estimates of secular change in bottom seawater temperature. Higher fluid temperature within the crust will have increased reaction rates potentially liberating more basaltic Ca and hence enhancing carbonate mineral precipitation. Additionally, if crustal fluid pH is controlled by fluid-rock reaction, the higher Ca content of the Cretaceous ocean will also have enhanced carbonate mineral precipitation. New estimates of the rate of CO2 uptake by the upper ocean crust during the Cenozoic are much lower than previous estimates.
Resumo:
We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.