67 resultados para hematite powder
Resumo:
Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 µm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.
Resumo:
Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.