110 resultados para factory
Resumo:
The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
A strong El Niño developed in early 2015. Measurements from a research cruise on the RV Sonne in October 2015 near the equator east of the Galapagos Islands and off the shelf of Peru, are used to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this region. At the equator at 85°30' W, a clear temperature increase leading to lower densities in the upper 350 m, despite a concurrent salinity increase from 40 to 350 m, developed in October 2015. Lower nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were observed between 40 and 130 m. Except for the upper 60 m at 2°30' S, however, there was no obvious increase in oxygen concentrations at sampling stations just north (1° N) and south (2°30' S) of the equator at 85°30' W. In the equatorial current field, the Equatorial Undercurrent (EUC) east of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the equatorial channel between 1° S and 1° N, and a weak current band of 0.78 Sv located between 1° S and 2°30' S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El Niño events. Off the Peruvian shelf at ~9° S, where the sea surface temperature (SST) was elevated, upwelling was modified, and warm, saline and oxygen rich water was upwelled. Despite some weak El Niño related SST increase at ~12 to 16° S, the upwelling of cold, low salinity and oxygen-poor water was still active at the easternmost stations at three sections at ~12° S, ~14° S and ~16° S, while further west on these sections a transition to El Niño conditions appeared. Although in early 2015 the El Niño was strong and in October 2015 showed a clear El Niño influence on the EUC, in the eastern tropical Pacific the measurements only showed developing El Niño water mass distributions. In particular the oxygen distribution indicated the ongoing transition from 'typical' to El Niño conditions progressing southward along the Peruvian shelf.
Resumo:
The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.