416 resultados para environmental concentrations
Resumo:
In order to evaluate bioturbation in abyssal Arabian-Sea sediments of the Indus fan profiles of 210Pb (half-life: 22.3 yr) and 234Th (half-life: 24.1 d) were measured in cores collected during September and October 1995 and April 1997, respectively. The density and composition of epibenthic megafauna and lebensspuren were determined in vertical seafloor photographs during April 1997. Mean eddy-diffusive mixing coefficients according to the distribution of excess 210Pb ( 210Pb-DB) were 0.072±0.028, 0.068±0.055, 0.373±0.119, 0.037±0.009 and 0.079±0.119 cm**2 yr**-1 in the northern, western, central, eastern and southern abyssal Arabian sea, respectively. Mean eddy-diffusive mixing coefficients according to the distribution of excess 234Th (234Th-DB) were 0.53, 1.64 and 0.47 cm**2 yr**-1 in the northern, western and central abyssal Arabian Sea, respectively. Mobile epibenthic megafauna at the western, northern, central and southern study sites were dominated by ophiuroids, holothurians, ophiuroids and natant decapods (the respective densities were 100, 82, 29 and 6 individuals 1000 m**-2). The northern study site was characterized by a high abundance of spoke traces and fecal casts. The central site showed spoke traces and many tracks. The southern site displayed the highest abundance of spoke traces, whereas at the western site hardly any lebensspuren were observed. There is evidence for at least two functional endmember communities in the Arabian Sea. In the northwestern Arabian Sea (WAST) vertical particle displacement seems to be dominated by macrofauna and primarily eddy-diffusive. In the southern Arabian Sea (SAST) non-local and 'incidental' mixing due to spoke-trace producers might become more important and superimpose reduced eddy-diffusive mixing. With respect to biological data CAST is an intermediate location. Given the biological data, average 210Pb-DB is higher and decimeter-scale variability of 210Pb-DB smaller at CAST than expected. These findings indicate that in a mixture of both endmember communities the organisms may interact in way that increases values of biodiffusivity, as reflected by 210Pb-DB, and reduces decimeter-scale 210Pb-DB heterogeneity in comparison to the simple sum of the isolated effects of the endmembers. For time scales <100 years there was no evidence for a relationship between food supply (POC flux) and bioturbation intensity, as reflected by 210Pb-DB and 234Th-DB. Bioturbation intensity should be controlled primarily by the composition of the benthic fauna, its specific adaptation to the environmental setting, and the abundance of each species of the benthic community. Food supply can have only an indirect influence on bioturbation intensity. In certain parts of the ocean the a priori overall positive relationship between POC flux and biodiffusivity might include restricted intervals displaying no or even negative relations.
Resumo:
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.
Resumo:
We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.
Resumo:
The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n = 30) and ringed seals (n = 46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)2D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)2D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption.
Resumo:
A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic whitesided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest Sum PCN concentrations were found in samples from the latest sampling period.