64 resultados para drillhole
Resumo:
A suite of petropysical measurements - velocity versus pressure, bulk density, porosity, matrix density, and magnetic susceptibility -was undertaken on 63 core plugs from CRP-2A. These data are used to calibrate neutron, resistivity, and magnetic susceptibility well logs. Agreement between core-plug magnetic susceptibility measurements and both well-log and whole-core data is excellent. Comparison of core-plug bulk densities with continious well-log density records shows very good agreement. Core-plug measurements of matrix density permit conversion of the well-log and whole-core density records to porosity. Sands and muds exhibit similar downhole compaction patterns, and both patterns are consistent with 250 ± 150 m of exhumation. Pervasive cementation, particularly in the lower half of the core, has affected many CRP-2A petrophysical parameters: (1) fractional porosities are reduced by about 0.05 - 0.10 in the lower part of the hole; (2) velocity and porosity rebound are much smaller than is usually observed for unconsolidated sediments with burial depths similar to CRP-2A; (3) velocities are unusually insensitive to pressure, suggesting that any exhumation-induced microcracks have been scaled subsequently; (4) the velocity/porosity relationship lacks the characteristic signature of exhumation-induced microcracks; (5) the velocity/porosity relationship changes with depth, indicating downhole increase in consolidation; (6) Vp/Vs ratios of the highest-porosity sediments are unusually low, implying enhancement of framework stiffness.
Resumo:
A faunal comprising 18 foraminiferal taxa wa recovered from a suite of 52 core samples from lower Miocene sandstone, claystone and diamictite in the CRP-1 drillhole, Cape Roberts, Antarctica. The fauna is characterised by low foraminiferal abundance and diversity, the absence of planktics, and typically, the presence of Cribroelphidium sp. and/or Melonis spp. These factors indicate deposition in an inner shelf or nearshore environment. Many of the foraminifers found in CRP-1 also occure in the upper Oligocene-Miocene sequences in CIROS-1 and DSDP-270, but the fauna provides no precise indication of age. Typical and distinctive species from CRP-1 are illustrated with SEM photomicrographs.
Resumo:
The relationship between whole-core compressional wave velocities and gamma-ray attenuation porosities of sediments cored at CRP-1 is examined and compared with results from core-plug samples and global models. Both core-plug and whole-core velocities show a strong dependence on porosity: this relationship appears to be independent of lithology. In the range from 0.1 to 0.4 of fractional porosity (Miocene strata), plug velocities are generally 0.2 - 0.5 km s-1 higher than whole-core velocities. Possible reasons include decreased rigidity in the whole core and diagenetic changes in the plugs. Possibly both velocity measurements are correct but neither is fully representative for in situ conditions. It appears that the core-plug results are more compatible with data from other regions than the whole-core data. After removing first-order compaction control from the whole-core porosity record, a second-order control by clay content can be quantified as a simple positive linear regression (R=0.6). In contrast, after correction for first-order control, porosity and velocity are not significantly influenced by lonestone abundance except for rare, very large lonestones.
Resumo:
Drillhole-determined sea-ice thickness was compared with values derived remotely using a portable small-offset loop-loop steady state electromagnetic (EM) induction device during expeditions to Fram Strait and the Siberian Arctic, under typical winter and summer conditions. Simple empirical transformation equations are derived to convert measured apparent conductivity into ice thickness. Despite the extreme seasonal differences in sea-ice properties as revealed by ice core analysis, the transformation equations vary little for winter and summer. Thus, the EM induction technique operated on the ice surface in the horizontal dipole mode yields accurate results within 5 to 10% of the drillhole determined thickness over level ice in both seasons. The robustness of the induction method with respect to seasonal extremes is attributed to the low salinity of brine or meltwater filling the extensive pore space in summer. Thus, the average bulk ice conductivity for summer multiyear sea ice derived according to Archie's law amounts to 23 mS/m compared to 3 mS/m for winter conditions. These mean conductivities cause only minor differences in the EM response, as is shown by means of 1-D modeling. However, under summer conditions the range of ice conductivities is wider. Along with the widespread occurrence of surface melt ponds and freshwater lenses underneath the ice, this causes greater scatter in the apparent conductivity/ice thickness relation. This can result in higher deviations between EM-derived and drillhole determined thicknesses in summer than in winter.